Patents by Inventor Tsukasa Hosokawa

Tsukasa Hosokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085253
    Abstract: An object of the present invention is to provide a strain amount detection device capable of accurately detecting deformations, in multiple directions, of a tire by one strain measuring element. A strain amount detection device according to the present invention includes a disk-shaped base member that holds a strain measuring element, in which the base member acts as a strain body by transmitting strain of a tire to the strain measuring element.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 14, 2024
    Applicant: Hitachi Astemo, Ltd.
    Inventors: Kenji YOSHIHARA, Hiroyuki ABE, Tsukasa TAKAHASHI, Takeo HOSOKAWA
  • Patent number: 11667560
    Abstract: A manufacturing method for an optical fiber, includes: drawing, while heating in a heating furnace, a lower end of an optical fiber preform that is to be an optical fiber having a core consisting of silica glass containing a rare earth element compound. The heating furnace has a temperature profile in which a temperature of the heating furnace increases to a maximum temperature Tmax and then decreases from an upstream side of the heating furnace toward a downstream side of the heating furnace. The temperature profile has a changing point at which the temperature decreases more steeply on the downstream side from a position where the maximum temperature Tmax is reached. At the maximum temperature, a temperature of the silica glass is higher than or equal to a glass transition temperature and the silica glass is in a single phase.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: June 6, 2023
    Assignee: Fujikura Ltd.
    Inventor: Tsukasa Hosokawa
  • Publication number: 20220271494
    Abstract: An active element added-optical fiber includes a core, having a radius d and including a first region and a second region, and a cladding that surrounds an outer peripheral surface of the core without a gap and propagates light in a few mode. The first region is a region from a central axis of the core to a radius ra and contains ytterbium as an active element. The second region is a region to the radius d that surrounds the first region without a gap and contains a plurality of dopants, one of which is germanium. The active element is not added to a region within the second region from a radius rc to the radius d. The germanium is not added to a region within the first region from the central axis to a radius rb, and a concentration of the germanium is highest among the plurality of dopants.
    Type: Application
    Filed: February 22, 2021
    Publication date: August 25, 2022
    Applicant: FUJIKURA LTD.
    Inventors: Tsukasa Hosokawa, Rintaro Kitahara, Ryoichi Nishimura
  • Publication number: 20210292223
    Abstract: A manufacturing method for an optical fiber, includes: drawing, while heating in a heating furnace, a lower end of an optical fiber preform that is to be an optical fiber having a core consisting of silica glass containing a rare earth element compound. The heating furnace has a temperature profile in which a temperature of the heating furnace increases to a maximum temperature Tmax and then decreases from an upstream side of the heating furnace toward a downstream side of the heating furnace. The temperature profile has a changing point at which the temperature decreases more steeply on the downstream side from a position where the maximum temperature Tmax is reached. At the maximum temperature, a temperature of the silica glass is higher than or equal to a glass transition temperature and the silica glass is in a single phase.
    Type: Application
    Filed: September 17, 2019
    Publication date: September 23, 2021
    Applicant: Fujikura Ltd.
    Inventor: Tsukasa Hosokawa
  • Patent number: 9698557
    Abstract: An optical fiber for amplification includes a core having an inner core and an outer core surrounding the outer circumferential surface of the inner core. The relative refractive index difference of the inner core to a cladding is smaller than the relative refractive index difference of the outer core to the cladding. The outer core is entirely doped with erbium. The theoretical cutoff wavelength of an LP11 mode light beam is a wavelength of 1,565 nm or more. The theoretical cutoff wavelength of an LP21 mode light beam is a wavelength of 1,530 nm or less. The theoretical cutoff wavelength of the LP02 mode light beam is a wavelength of 980 nm or less.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: July 4, 2017
    Assignees: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION, OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Tsukasa Hosokawa, Kentaro Ichii, Katsuhiro Takenaga, Shoichiro Matsuo, Hirotaka Ono, Makoto Yamada
  • Patent number: 9673589
    Abstract: An amplification optical fiber operable to propagate light beams in a plurality of modes in a predetermined wavelength range through a core doped with a rare earth element, wherein Expression (1) is satisfied, where a cutoff wavelength of a propagated highest mode light beam is defined as ?max, under conditions in which the cutoff wavelength of the highest mode light beam is defined as ?c, a shortest wavelength of the wavelength range is defined as ?min, and a cutoff wavelength of a second-highest mode light beam to the highest mode light beam is ?min. ?c>0.5 ?min+0.5 ?max??(1).
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: June 6, 2017
    Assignees: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION, OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Tsukasa Hosokawa, Kentaro Ichii, Katsuhiro Takenaga, Shoichiro Matsuo, Hirotaka Ono, Makoto Yamada
  • Publication number: 20170054266
    Abstract: An amplification optical fiber operable to propagate light beams in a plurality of modes in a predetermined wavelength range through a core doped with a rare earth element, wherein Expression (1) is satisfied, where a cutoff wavelength of a propagated highest mode light beam is defined as ?max, under conditions in which the cutoff wavelength of the highest mode light beam is defined as ?c, a shortest wavelength of the wavelength range is defined as ?min, and a cutoff wavelength of a second-highest mode light beam to the highest mode light beam is ?min. ?c>0.5 ?min+0.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 23, 2017
    Applicants: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION, OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Tsukasa Hosokawa, Kentaro Ichii, Katsuhiro Takenaga, Shoichiro Matsuo, Hirotaka Ono, Makoto Yamada
  • Publication number: 20160268757
    Abstract: An optical fiber for amplification includes a core having an inner core and an outer core surrounding the outer circumferential surface of the inner core. The relative refractive index difference of the inner core to a cladding is smaller than the relative refractive index difference of the outer core to the cladding. The outer core is entirely doped with erbium. The theoretical cutoff wavelength of an LP11 mode light beam is a wavelength of 1,565 nm or more. The theoretical cutoff wavelength of an LP21 mode light beam is a wavelength of 1,530 nm or less. The theoretical cutoff wavelength of the LP02 mode light beam is a wavelength of 980 nm or less.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 15, 2016
    Applicants: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION, OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Tsukasa Hosokawa, Kentaro Ichii, Katsuhiro Takenaga, Shoichiro Matsuo, Hirotaka Ono, Makoto Yamada
  • Patent number: 8162328
    Abstract: By bending and stretching a link mechanism, both left and right wheels of a vehicle can be inclined toward inside of cornering to generate a camber thrust as a lateral force, i.e. an increase in cornering force. Further, by bending and stretching the link mechanism, the passenger compartment can be inclined in accordance with inclination of a connecting link, and thus the center of gravity of the vehicle can be moved toward its inner wheel during cornering. By preventing lifting of the inner wheel during cornering, cornering performance is improved. Because the passenger compartment is inclined toward the inner wheel during cornering, centrifugal force is less likely to be felt by the occupant.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 24, 2012
    Assignee: Kabushikikaisha Equos Research
    Inventors: Munehisa Horiguchi, Masahiro Hasebe, Nobuaki Miki, Takumi Tachibana, Takashi Naito, Katsunori Doi, Tsukasa Hosokawa
  • Publication number: 20090256331
    Abstract: By bending and stretching a link mechanism, both left and right wheels of a vehicle can be inclined toward inside of cornering to generate a camber thrust as a lateral force, i.e. an increase in cornering force. Further, by bending and stretching the link mechanism, the passenger compartment can be inclined in accordance with inclination of a connecting link, and thus the center of gravity of the vehicle can be moved toward its inner wheel during cornering. By preventing lifting of the inner wheel during cornering, cornering performance is improved. Because the passenger compartment is inclined toward the inner wheel during cornering, centrifugal force is less likely to be felt by the occupant.
    Type: Application
    Filed: October 31, 2006
    Publication date: October 15, 2009
    Applicant: Kabushikikaisha Equos Research
    Inventors: Munehisa Horiguchi, Masahiro Hasebe, Nobuaki Miki, Takumi Tachibana, Takashi Naito, Katsunori Doi, Tsukasa Hosokawa