Patents by Inventor TSUNG-CHE LU

TSUNG-CHE LU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961580
    Abstract: A sense amplifier includes a first pair of transistors having gate terminals respectively coupled to a first input terminal for receiving a first input signal and to a second input terminal for receiving a second input signal, source terminals coupled to a first power supply terminal, and drain terminals. The sense amplifier also includes a second pair of transistors having gate terminals coupled to a clock terminal, source terminals respectively coupled to the drain terminals of the first pair of transistors, and drain terminals. The sense amplifier also includes a third pair of transistors having gate terminals coupled to the clock terminal, drain terminals respectively coupled to the drain terminals of the second pair of transistors, and source terminals coupled to a second power supply terminal. In addition, the sense amplifier includes an output circuit coupled to the drain terminals of the second pair of transistors and having an output terminal.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20240085941
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Patent number: 11909399
    Abstract: A system includes a measuring device, a processing device and a signal generating device. The measuring device is configured to measure a voltage difference between a first node and a second node. The processing device is coupled between the first node and the second node. The signal generating device is configured to provide a first clock signal to the processing device to adjust the voltage difference, configured to generate the first clock signal according to a first enable signal and a second clock signal, and configured to align an edge of the first enable signal with an edge of the second clock signal. A method and a device are also disclosed herein.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20240051224
    Abstract: A light control module including a first substrate, a second substrate, a medium layer, a polarizing element and an electrical connection element is provided. The first substrate has an outer surface and an inner surface opposite to the outer surface. The second substrate is opposite to the first substrate. The medium layer is disposed between the inner surface of the first substrate and the second substrate. The polarizing element is disposed on the outer surface of the first substrate and includes an adhesive layer. The electrical connection element is at least partially disposed on the outer surface of the first substrate and connected to the adhesive layer. A three-dimensional printing device and an operation method thereof are also provided.
    Type: Application
    Filed: July 7, 2023
    Publication date: February 15, 2024
    Applicant: Innolux Corporation
    Inventors: Chieh-Hsiang Hsu, Tsung-Che Lu, Chiu-Ju Chu, Chang-Heng Tsai
  • Publication number: 20240014811
    Abstract: A gated tri-state (G3S) inverter includes: first, second and third transistors of a first dopant type (D1 transistors) and first, second and third transistors of a second dopant type (D2 transistors) serially connected between a first reference voltage and second reference voltage, the second dopant type being different than the first dopant type; gate terminals of an alpha one of the noted D1 transistors and an alpha one of the noted D2 transistors being configured to receive an input signal; gate terminals of a beta one of the noted D1 transistors and a beta one of the noted D2 transistors being configured to receive a gating signal; a gate terminal of a gamma one of the noted D2 transistors being configured to receive an enable signal; and a gate terminal of a gamma one of the noted D1 transistors being configured to receive an enable_bar signal.
    Type: Application
    Filed: August 10, 2023
    Publication date: January 11, 2024
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Patent number: 11853112
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Patent number: 11855643
    Abstract: A phase interpolating (PI) system includes: a PI stage configured to receive first and second clock signals and a multi-bit weighting signal, and generate an interpolated clock signal; and an amplifying stage configured to receive and amplify the interpolated clock signal, the amplifying stage including a capacitive component. The capacitive component is tunable to exhibit non-zero capacitances. The capacitive component has a Miller effect configuration resulting in a reduced footprint of the amplifying stage.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20230395100
    Abstract: A sense amplifier includes a first pair of transistors having gate terminals respectively coupled to a first input terminal for receiving a first input signal and to a second input terminal for receiving a second input signal, source terminals coupled to a first power supply terminal, and drain terminals. The sense amplifier also includes a second pair of transistors having gate terminals coupled to a clock terminal, source terminals respectively coupled to the drain terminals of the first pair of transistors, and drain terminals. The sense amplifier also includes a third pair of transistors having gate terminals coupled to the clock terminal, drain terminals respectively coupled to the drain terminals of the second pair of transistors, and source terminals coupled to a second power supply terminal. In addition, the sense amplifier includes an output circuit coupled to the drain terminals of the second pair of transistors and having an output terminal.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Publication number: 20230387897
    Abstract: A system includes a measuring device, a processing device and a signal generating device. The measuring device is configured to measure a voltage difference between a first node and a second node. The processing device is coupled between the first node and the second node. The signal generating device is configured to provide a first clock signal to the processing device to adjust the voltage difference, configured to generate the first clock signal according to a first enable signal and a second clock signal, and configured to align an edge of the first enable signal with an edge of the second clock signal. A method and a device are also disclosed herein.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Publication number: 20230375872
    Abstract: An electronic device is provided. The electronic device includes a first substrate, a polarizer, and a conductive adhesive. The polarizer is disposed on the first substrate and has a conductive layer. The conductive adhesive is disposed on the first substrate and electrically connected to the conductive layer. From a top view, the conductive adhesive is adjacent to an edge of the polarizer and has an extending direction. An angle between the extending direction and an absorption-axis direction of the polarizer is between 80° and 100°.
    Type: Application
    Filed: April 13, 2023
    Publication date: November 23, 2023
    Inventors: Tsung-Che LU, Chieh-Hsiang HSU, Chang-Heng TSAI
  • Publication number: 20230281366
    Abstract: Method and apparatus for optimizing circuit design are disclosed. In one aspect, the method includes receiving a circuit design of an integrated circuit and identifying a first circuit design of a first subsystem of the IC and a second circuit design of a second subsystem of the IC. The first subsystem operates on a plurality of digital variable signals and the second subsystem operates on a plurality of analog variable signals. The method also includes synthesizing a first HDL netlist based on the first circuit design, synthesizing a second HDL netlist based on the second circuit design, and obtaining behaviors of the circuit design of the IC using a single HDL-based simulator with both the first HDL netlist and the second HDL netlist as inputs.
    Type: Application
    Filed: July 6, 2022
    Publication date: September 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Fu Chin-Ming, Chih-Hsien Chang
  • Publication number: 20230090529
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Patent number: 11543851
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20220404858
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Application
    Filed: June 18, 2021
    Publication date: December 22, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20220239288
    Abstract: A phase interpolating (PI) system includes: a PI stage configured to receive first and second clock signals and a multi-bit weighting signal, and generate an interpolated clock signal; and an amplifying stage configured to receive and amplify the interpolated clock signal, the amplifying stage including a capacitive component. The capacitive component is tunable to exhibit non-zero capacitances. The capacitive component has a Miller effect configuration resulting in a reduced footprint of the amplifying stage.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 28, 2022
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Patent number: 11296684
    Abstract: A phase interpolating (PI) system includes: a phase-interpolating (PI) stage configured to receive first and second clock signals and a multi-bit weighting signal, and generate an interpolated clock signal, the PI stage being further configured to avoid a pull-up/pull-down (PUPD) short-circuit situation by using the multi-bit weighting signal and a logical inverse thereof (multi-bit weighting_bar signal); and an amplifying stage configured to receive and amplify the interpolated clock signal, the amplifying stage including a capacitive component; the capacitive component being tunable; and the capacitive component having a Miller effect configuration resulting in a reduced footprint of the amplifying stage.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: April 5, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20210305975
    Abstract: A phase interpolating (PI) system includes: a phase-interpolating (PI) stage configured to receive first and second clock signals and a multi-bit weighting signal, and generate an interpolated clock signal, the PI stage being further configured to avoid a pull-up/pull-down (PUPD) short-circuit situation by using the multi-bit weighting signal and a logical inverse thereof (multi-bit weighting_bar signal); and an amplifying stage configured to receive and amplify the interpolated clock signal, the amplifying stage including a capacitive component; the capacitive component being tunable; and the capacitive component having a Miller effect configuration resulting in a reduced footprint of the amplifying stage.
    Type: Application
    Filed: September 14, 2020
    Publication date: September 30, 2021
    Inventors: Tsung-Che LU, Chin-Ming FU, Chih-Hsien CHANG
  • Patent number: 10153355
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a substrate, a fin structure, a metal gate and a first polysilicon strip. The fin structure is on the substrate. The metal gate is over the fin structure and is substantially perpendicular to the fin structure. The first polysilicon strip is at a first edge of the fin structure and is substantially parallel to the metal gate.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sheng Chiang Hung, Tsung-Che Lu, Chih-Fu Chang
  • Publication number: 20170162667
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a substrate, a fin structure, a metal gate and a first polysilicon strip. The fin structure is on the substrate. The metal gate is over the fin structure and is substantially perpendicular to the fin structure. The first polysilicon strip is at a first edge of the fin structure and is substantially parallel to the metal gate.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 8, 2017
    Inventors: SHENG CHIANG HUNG, TSUNG-CHE LU, CHIH-FU CHANG