Patents by Inventor Tsuyoshi Suzuki

Tsuyoshi Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190154609
    Abstract: A gas alarm device is provided, where a heating control section extends a heating period of time of a heater section if a first determination section determines that electrical characteristics of a sensing section of a gas sensor satisfy a first condition, and continues extension of the heating period of time of the heater section according to a determination result, by a second determination section, of whether or not the electrical characteristics upon lapse of extension of the heating period of time satisfy a second condition, and a gas detection section determines, according to the electrical characteristics upon lapse of extension time, that detection target gas is detected.
    Type: Application
    Filed: January 21, 2019
    Publication date: May 23, 2019
    Inventors: Naoyoshi MURATA, Takuya SUZUKI, Makoto OKAMURA, Tsuyoshi KAMIOKA, Hisao OHNISHI, Atsushi NONAKA
  • Publication number: 20190157664
    Abstract: A non-aqueous electrolyte secondary battery includes a negative electrode active material represented by: ?(Si material)+?(carbon material), the Si material is one or more kinds selected from the group consisting of SiOx that is a mixture of amorphous SiO2 particles and Si particles and a Si-containing alloy; ? and ? represent % by mass; and 80??+??98, 0.1???40, and 58???97.9 are satisfied), and when area proportions (%) of the Si material and the carbon material in an area of a field of view of each image of cross-sections of the layer in a case where a plurality of arbitrary places is selected in a plane of the layer are designated as S (%) and (100?S) (%), respectively, a difference between a maximum value and a minimum value of S is within 5%.
    Type: Application
    Filed: April 28, 2016
    Publication date: May 23, 2019
    Inventors: Kensuke Yamamoto, Wataru Ogihara, Gentaro Kano, Hideaki Tanaka, Youichirou Kondou, Masaaki Suzuki, Tsuyoshi Tanabe, Takashi Nakano
  • Publication number: 20190148046
    Abstract: A magnetoresistance effect device includes: a first magnetoresistance effect element including a first ferromagnetic layer, a second ferromagnetic layer, and a first spacer layer, a metal layer, a first electrode, an input terminal, an output terminal, and a reference potential terminal, wherein the first ferromagnetic layer, the first spacer layer, the second ferromagnetic layer, and the first electrode are disposed in this order, the second ferromagnetic layer is in electrical contact with the first electrode, which is connected to the output terminal configured to output a high-frequency signal, the metal layer is connected to the input and reference potential terminals so that a high-frequency signal flowing from the input terminal to the metal layer flows to the reference potential terminal, which is in electrical contact with the first ferromagnetic layer, and the first magnetoresistance effect element has an application terminal configured to apply a DC current or a DC voltage.
    Type: Application
    Filed: September 14, 2017
    Publication date: May 16, 2019
    Applicant: TDK CORPORATION
    Inventor: Tsuyoshi SUZUKI
  • Publication number: 20190140261
    Abstract: A non-aqueous electrolyte secondary battery includes: a negative electrode active material represented by the Formula (1)=? (Si material)+? (carbon material), wherein the Si material is one or more kinds selected from the group consisting of SiOx that is a mixture of amorphous SiO2 particles and Si particles and a Si-containing alloy; ? and ? represent % by mass of each component in the layer; and 80??+??98, 0.1???40, and 58???97.9 are satisfied, and a difference between the maximum value and the minimum value of an area proportion (%) of a binder in an area of the field of view of each image of cross-sections of the layer in a case where a plurality of arbitrary places is selected in a plane of the negative electrode active material layer is within 10%.
    Type: Application
    Filed: April 28, 2016
    Publication date: May 9, 2019
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Kensuke Yamamoto, Wataru Ogihara, Gentaro Kano, Hideaki Tanaka, Youichirou Kondou, Masaaki Suzuki, Tsuyoshi Tanabe, Takashi Nakano
  • Patent number: 10263622
    Abstract: [Object] To provide a semiconductor apparatus and a method of controlling a MOS transistor, with which a leak current of the MOS transistor can be suppressed. [Solving Means] A semiconductor apparatus includes a MOS transistor and a voltage application unit that applies, when the MOS transistor is off, a voltage for controlling a threshold value of the MOS transistor in a shallower direction onto a substrate of the MOS transistor.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: April 16, 2019
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Tsuyoshi Suzuki
  • Patent number: 10236479
    Abstract: A power-cell packaging material including a layered body obtained by layering at least a substrate layer, a metal layer, an insulating layer, and a sealant layer, in this order. The insulating layer has a hardness in the range of 10-300 MPa, when measured by using a nanoindenter and pressing the indenter 5 ?m into the insulating layer from a cross-section of the layered body in the layering direction thereof.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: March 19, 2019
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Tetsuya Ojiri, Tsuyoshi Suzuki, Kazuhiko Yokota, Rikiya Yamashita, Masakazu Kandori
  • Publication number: 20180316077
    Abstract: A magnetoresistance effect device includes a first port, a second port, a magnetoresistance effect element, a first signal line that is connected to the first port and applies a high-frequency magnetic field to the magnetoresistance effect element, a second signal line that connects the second port to the magnetoresistance effect element, and a direct current application terminal that is connected to a power source configured to apply a direct current or a direct voltage in a lamination direction of the magnetoresistance effect element. The first signal line includes a plurality of high-frequency magnetic field application areas capable of applying a high-frequency magnetic field to the magnetoresistance effect element, and the plurality of high-frequency magnetic field application areas in the first signal line are disposed at positions at which high-frequency magnetic fields generated in the high-frequency magnetic field application areas reinforce each other in the magnetoresistance effect element.
    Type: Application
    Filed: April 25, 2018
    Publication date: November 1, 2018
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Junichiro URABE, Tsuyoshi SUZUKI, Atsushi SHIMURA
  • Publication number: 20180315535
    Abstract: The magnetoresistance effect device includes: a first port; a second port; a magnetoresistance effect element; a first signal line that is connected to the first port and applies a high frequency magnetic field to the magnetoresistance effect element; a second signal line that connects the second port and the magnetoresistance effect element to each other; and a direct current application terminal capable of being connected to a power supply that applies a direct current or a direct current voltage. The first signal line includes a magnetic field generator, which extends in a first direction, at a position in the lamination direction of the magnetoresistance effect element or an in-plane direction that is orthogonal to the lamination direction, and the magnetic field generator and the magnetoresistance effect element include an overlapping portion as viewed from the lamination direction in which the magnetic field generator is disposed, or the in-plane direction.
    Type: Application
    Filed: April 25, 2018
    Publication date: November 1, 2018
    Applicant: TDK CORPORATION
    Inventors: Takekazu YAMANE, Junichiro URABE, Tsuyoshi SUZUKI, Atsushi SHIMURA
  • Publication number: 20180309046
    Abstract: Magnetoresistive effect device including magnetoresistive effect element which high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including magnetization fixed, spacer, and magnetization free layer wherein magnetization direction is changeable; first and second ports; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. Closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed. Magnetoresistive effect element is arranged wherein direct current input from direct-current input terminal flows through magnetoresistive effect element in direction from magnetization fixed layer to magnetization free layer.
    Type: Application
    Filed: June 2, 2016
    Publication date: October 25, 2018
    Applicant: TDK CORPORATION
    Inventors: Junichiro URABE, Tetsuya SHIBATA, Atsushi SHIMURA, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Publication number: 20180277749
    Abstract: A magnetoresistive effect device including a magnetoresistive effect element with which a high-frequency filter can be realized is provided. Magnetoresistive effect device includes: at least one magnetoresistive effect element including a magnetization fixed layer, spacer layer, and magnetization free layer in which magnetization direction is changeable; first and second port; signal line; and direct-current input terminal. First and second ports are connected to each other via signal line. Magnetoresistive effect element is connected to signal line and is to be connected to ground in parallel to second port. Direct-current input terminal is connected to signal line. A closed circuit including magnetoresistive effect element, signal line, ground, and direct-current input terminal is to be formed.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 27, 2018
    Applicant: TDK CORPORATION
    Inventors: Junichiro URABE, Tetsuya SHIBATA, Atsushi SHIMURA, Takekazu YAMANE, Tsuyoshi SUZUKI
  • Publication number: 20180272655
    Abstract: A thermal transfer sheet includes a support film and a transfer layer provided on one surface of the support film. The transfer layer at least includes a decorative layer and an adhesive layer provided on an obverse side of the decorative layer. The adhesive layer includes a first adhesive layer and a second adhesive layer laminated on the first adhesive layer. The first adhesive layer is positioned on an obverse side of the second adhesive layer. The first adhesive layer is made of a first resin having thermal plasticity and has a lower viscosity than the second adhesive layer. The second adhesive layer is made of a second resin having thermal plasticity and has a higher glass-transition point than the first adhesive layer. Monomer units constituting the first resin and monomer units constituting the second resin are partly or entirely identical.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 27, 2018
    Inventors: Koji KUNO, Tsuyoshi SUZUKI, Ryohei UTSUMI, Yukiyoshi SOMA, Daisuke MIYACHI
  • Patent number: 10074688
    Abstract: A magnetoresistive effect device includes a first magnetoresistive effect element, a second magnetoresistive effect element, a first port, a second port, a signal line, and a direct-current input terminal. The first port, the first magnetoresistive effect element, and the second port are connected in series to each other in this order via the signal line. The second magnetoresistive effect element is connected to the signal line in parallel with the second port. The first magnetoresistive effect element and the second magnetoresistive effect element are formed so that the relationship between the direction of direct current that is input from the direct-current input terminal and that flows through the first magnetoresistive effect element and the order of arrangement of a magnetization fixed layer, a spacer layer, and a magnetization free layer in the first magnetoresistive effect element is opposite to the above relationship in the second magnetoresistive effect element.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: September 11, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Tsuyoshi Suzuki, Junichiro Urabe, Takekazu Yamane, Atsushi Shimura
  • Patent number: 10074951
    Abstract: A commutator includes an insulating section that is formed in a tube shape including a shaft insertion hole through which a shaft is inserted, and that is formed with an indented portion in an end portion at one side in an axial direction of the shaft. The commutator also includes plural segments that are supported by an outer peripheral portion of the insulating section, that are arrayed around a circumferential direction of the insulating section with spacings therebetween, and that are each provided with an anchor portion at an end portion at the one side in the axial direction of the shaft. The commutator also includes a first, second, third short-circuit wires, each connecting the anchor portion of respective one segment to the anchor portion of respective another segment, and at least a portion being disposed inside the indented portion formed at the insulating section.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: September 11, 2018
    Assignee: ASMO CO., LTD.
    Inventors: Akihiko Seki, Yasuhiro Kanematsu, Noriyasu Nishio, Norifumi Suzuki, Tsuyoshi Suzuki, Kazuo Kato, Toshiyuki Natsume, Kenichi Sugibayashi
  • Patent number: 10070841
    Abstract: In order to provide an arithmetic device, an X-ray CT apparatus, and an image reconstruction method, capable of reducing processing time while maintaining a noise reduction effect, in a successive approximation image reconstruction method (separable paraboloidal surrogate (SPS) method) of the related art, updated images are forward-projected, whenever images are repeatedly updated, a difference between forward projection data and original object projection data is back-projected so that a difference image is obtained, and a forward projection process and a back projection process are repeatedly performed, but, in the present invention, a forward projection process and a back projection process requiring calculation time are replaced with a process requiring a relatively small calculation amount, such as a difference between an updated image and a reference image, and, as a result, it is possible to considerably reduce a calculation amount in a successive approximation image reconstruction process and to reduc
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: September 11, 2018
    Assignee: HITACHI, LTD.
    Inventors: Ryota Kohara, Tsuyoshi Suzuki, Yuta Ogura
  • Patent number: 9966922
    Abstract: A magnetoresistive effect device includes a magnetoresistive effect element first and second ports, a signal line, an inductor, and a direct current input terminal. The first port, the magnetoresistive effect element, and the second port are connected in series in this order via the signal line. The inductor is connected to one of the signal line between the magnetoresistive effect element and the first port and the signal line between the magnetoresistive effect element and the second port and is capable of being connected to ground. The direct-current input terminal is connected to the other of the above signal lines. A closed circuit including the magnetoresistive effect element, the signal line, the inductor, the ground, and direct-current input terminal is capable of being formed. The magnetoresistive effect element is arranged so that direct current flows in a direction from a magnetization fixed layer to a magnetization free layer.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: May 8, 2018
    Assignee: TDK CORPORATION
    Inventors: Tetsuya Shibata, Junichiro Urabe, Takekazu Yamane, Tsuyoshi Suzuki
  • Patent number: 9965061
    Abstract: An input device including an operating portion and a palm rest is provided. The operation portion includes an operating surface for accepting an operating input from a fingertip. The palm rest is positioned forward of the operating surface as viewed from an operator who places a palm on the palm rest. A tangent plane of a palm-resting surface of the palm rest is disposed on a front surface side of the operating surface. A portion of the operating surface that is close to the palm rest is inclined so that the portion of the operating surface becomes closer to the palm-resting surface of the palm rest as the portion of the operating surface is closer to the palm rest, as compared with another portion of the operating surface that is apart from the palm rest.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: May 8, 2018
    Assignee: DENSO CORPORATION
    Inventors: Tsuyoshi Suzuki, Shigeaki Nishihashi, Shinsuke Hisatsugu
  • Publication number: 20180110480
    Abstract: In order to provide an X-ray CT apparatus which can reconstruct a tomographic image with less unevenness in image quality at a high speed on the basis of projection data which is obtained by irradiating an object with X-rays, the X-ray CT apparatus of the invention includes an inverse projection phase width setting unit that sets an inverse projection phase width which is an angular width of projection data used for reconstruction, for each tomographic image, and a view weight calculation unit that calculates a view weight which is a weight coefficient multiplied by projection data within the inverse projection phase width and is a function of a view angle, for each position of a pixel of a tomographic image.
    Type: Application
    Filed: February 1, 2016
    Publication date: April 26, 2018
    Inventors: Tsuyoshi SUZUKI, Fuyuhiko TERAMOTO, Yuko AOKI, Taiga GOTO
  • Patent number: 9951401
    Abstract: This boron-containing aluminum material is obtained by carrying out the following: a mixed powder, obtained by mixing a boride powder containing first boride particles, second boride particles and particles of unavoidable impurities with an aluminum powder or aluminum alloy powder that forms a matrix, is filled into in a square aluminum pipe having a prescribed shape and then rolled by using pressure rolls the gap between which is adjusted.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: April 24, 2018
    Assignee: Kobe Steel, Ltd.
    Inventors: Takashi Choda, Yukihide Honda, Tsuyoshi Suzuki, Hitoshi Ishida, Ryutaro Wada, Yoshiki Takebayashi, Tatsuhiko Kusamichi, Fumiaki Kudo
  • Publication number: 20180106314
    Abstract: An interior reinforcement body (14) is provide inside a piston (16) so as to continue to an inner circumferential surface of a cylindrical wall portion (17) and an inner surface of a bottom wall portion (18). A plurality of reinforcement walls (26a, 26b) which make up a radially outward portion of the interior reinforcement body (14) are not arranged in a radial direction but are arranged so as to be inclined relative to the radial direction. In particular, a pair of circumferentially adjacent reinforcement walls (26a, 26b) are arranged so as to be inclined reversely relative to the radial direction, and radially inward end portions of the pair of reinforcement walls (26a, 26b) are connected together.
    Type: Application
    Filed: April 19, 2016
    Publication date: April 19, 2018
    Applicant: AKEBONO BRAKE INDUSTRY CO., LTD.
    Inventors: Tsuyoshi SUZUKI, Takefumi MORIO
  • Publication number: 20180090724
    Abstract: Provided is a cell packaging material having a high insulating performance and durability. A cell packaging material comprising a layered body provided with at least a substrate layer, a metal layer, an adhesive layer, and a heat-fusible resin layer in the stated order. The adhesive layer has a resin composition that contains an acid-modified polyolefin and an epoxy resin. In probe displacement amount measurements involving the use of a thermal mechanical analyzer, when a probe is placed on the surface of the adhesive layer at an end part of the cell packaging material and the probe is heated from 40° C. to 220° C., the position of the probe does not drop in relation to the initial value.
    Type: Application
    Filed: March 30, 2016
    Publication date: March 29, 2018
    Applicant: DAI NIPPON PRINTING CO., LTD.
    Inventors: Kaoru MIYAZAKI, Hirotoshi SAKAMOTO, Yousuke HAYAKAWA, Rikiya YAMASHITA, Takanori YAMASHITA, Tsuyoshi SUZUKI, Yoichi MOCHIZUKI, Kazuhiko YOKOTA, Tetsuya OJIRI