Patents by Inventor Uriah J. Kilgore

Uriah J. Kilgore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240034699
    Abstract: The present disclosure relates to the integration of systems and methods associated with steam cracking, oligomerization reactions, hydrogenation reactions, and aromatization reactions for the production of benzene via the hydrogenation of oligomers produced from ethylene. In some aspects, the disclosed systems and methods utilize one or more of an oligomerization process, a hydrotreating process, and an aromatization process for producing a benzene comprising effluent. In further aspects, the systems and methods disclosed herein utilize one or more selective oligomerization catalyst systems.
    Type: Application
    Filed: July 25, 2023
    Publication date: February 1, 2024
    Inventors: Steven M. Bischof, Gregory G. Hendrickson, Uriah J. Kilgore, Bruce E. Kreischer, Scott G. Morrison, Ryan W. Snell, Orson L. Sydora
  • Patent number: 11859025
    Abstract: Disclosed herein are oligomerization processes in which ethylene and a catalyst system are first combined for a suitable residence time in an activation vessel, prior to introduction into a reaction zone to oligomerize ethylene to form a desired oligomer product, such as 1-hexene and/or 1-octene. Related oligomerization reaction systems that include the activation vessel also are disclosed. In these oligomerization processes and reaction systems, the catalyst system can be fully activated as it leaves the activation vessel and enters the reaction zone, thus providing greater catalyst utilization and less catalyst waste.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: January 2, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, James L. Hillier, Uriah J. Kilgore, Steve R. Hutchison, Bruce E. Kreischer, Orson L. Sydora
  • Publication number: 20230330652
    Abstract: Disclosed is a heteroatomic ligand-metal compound complex transition-state model which has been developed for activity, purity, and/or selectivity for selective ethylene oligomerizations, and density functional theory calculations for determining heteroatomic ligand-metal compound complex reactivity, product purity, and/or selectivity for ethylene trimerizations and/or tetramerizations. Using reaction ground states and transition states, and/or reaction ground states and transition states in combination with the energetic span model, this disclosure reveals that a chromium chromacycle mechanism, there are multiple ground states and multiple transition states, which can account for activity, purity, and/or selectivity for selective ethylene oligomerizations.
    Type: Application
    Filed: June 9, 2021
    Publication date: October 19, 2023
    Applicant: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Uriah J. Kilgore, Orson L. Sydora, Daniel H. Ess, Doo-Hyun Kwon, Nicholas K. Rollins
  • Patent number: 11691931
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) a bicyclic 2-[(phosphinyl)aminyl] cyclic imine chromium salt or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine and ii) an organoaluminum compound. The present disclosure also relates to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine chromium salt complex or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: July 4, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Patent number: 11685701
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) an N2-phosphinyl bicyclic amidine chromium salt or (b) a chromium salt and an N2-phosphinyl bicyclic amidine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) an N2-phosphinyl bicyclic amidine chromium salt complex or (b) a chromium salt and an N2-phosphinyl bicyclic amidine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: June 27, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Publication number: 20230150899
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) an N2-phosphinyl bicyclic amidine chromium salt or (b) a chromium salt and an N2-phosphinyl bicyclic amidine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) an N2-phosphinyl bicyclic amidine chromium salt complex or (b) a chromium salt and an N2-phosphinyl bicyclic amidine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Application
    Filed: September 27, 2022
    Publication date: May 18, 2023
    Inventors: Steven M. BISCHOF, Orson L. SYDORA, Daniel H. ESS, Uriah J. KILGORE, Doo-Hyun KWON
  • Publication number: 20230146088
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) a bicyclic 2-[(phosphinyl)aminyl] cyclic imine chromium salt or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine and ii) an organoaluminum compound. The present disclosure also relates to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine chromium salt complex or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Application
    Filed: August 18, 2022
    Publication date: May 11, 2023
    Inventors: Steven M. BISCHOF, Orson L. SYDORA, Daniel H. ESS, Uriah J. KILGORE, Doo-Hyun KWON
  • Patent number: 11583843
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) a bicyclic 2-[(phosphinyl)aminyl] cyclic imine chromium salt or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine chromium salt complex or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 21, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Patent number: 11505513
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) an N2-phosphinyl bicyclic amidine chromium salt or (b) a chromium salt and an N2-phosphinyl bicyclic amidine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) an N2-phosphinyl bicyclic amidine chromium salt complex or (b) a chromium salt and an N2-phosphinyl bicyclic amidine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 22, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Patent number: 11492305
    Abstract: The present disclosure relates to a catalyst system comprising i) (a) a bicyclic 2-[(phosphinyl)aminyl] cyclic imine chromium salt or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine and ii) an organoaluminum compound. The present disclosure also relate to a process comprising: a) contacting i) ethylene; ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine chromium salt complex or (b) a chromium salt and a bicyclic 2-[(phosphinyl)aminyl] cyclic imine; ii) an organoaluminum compound, and iii) optionally an organic reaction medium; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Daniel H. Ess, Uriah J. Kilgore, Doo-Hyun Kwon
  • Patent number: 11267909
    Abstract: Disclosed herein are oligomerization processes in which ethylene and a catalyst system are first combined for a suitable residence time in an activation vessel, prior to introduction into a reaction zone to oligomerize ethylene to form a desired oligomer product, such as 1-hexene and/or 1-octene. Related oligomerization reaction systems that include the activation vessel also are disclosed. In these oligomerization processes and reaction systems, the catalyst system can be fully activated as it leaves the activation vessel and enters the reaction zone, thus providing greater catalyst utilization and less catalyst waste.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: March 8, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, James L. Hillier, Uriah J. Kilgore, Steve R. Hutchison, Bruce E. Kreischer, Orson L. Sydora
  • Publication number: 20220025081
    Abstract: Disclosed herein are oligomerization processes in which ethylene and a catalyst system are first combined for a suitable residence time in an activation vessel, prior to introduction into a reaction zone to oligomerize ethylene to form a desired oligomer product, such as 1-hexene and/or 1-octene. Related oligomerization reaction systems that include the activation vessel also are disclosed. In these oligomerization processes and reaction systems, the catalyst system can be fully activated as it leaves the activation vessel and enters the reaction zone, thus providing greater catalyst utilization and less catalyst waste.
    Type: Application
    Filed: September 7, 2021
    Publication date: January 27, 2022
    Inventors: Steven M. Bischof, James L. Hillier, Uriah J. Kilgore, Steve R. Hutchison, Bruce E. Kreischer, Orson L. Sydora
  • Publication number: 20220017660
    Abstract: Disclosed herein are oligomerization processes in which ethylene and a catalyst system are first combined for a suitable residence time in an activation vessel, prior to introduction into a reaction zone to oligomerize ethylene to form a desired oligomer product, such as 1-hexene and/or 1-octene. Related oligomerization reaction systems that include the activation vessel also are disclosed. In these oligomerization processes and reaction systems, the catalyst system can be fully activated as it leaves the activation vessel and enters the reaction zone, thus providing greater catalyst utilization and less catalyst waste.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 20, 2022
    Inventors: Steven M. Bischof, James L. Hillier, Uriah J. Kilgore, Steve R. Hutchison, Bruce E. Kreischer, Orson L. Sydora
  • Patent number: 11117845
    Abstract: A catalyst system comprising i) a 2-[(phosphinyl)aminyl] cyclic imine transition metal compound complex and ii) an organoaluminum compound. A process comprising contacting i) ethylene, ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine transition metal compound complex, and (b) an organoaluminum compound, and iii) optionally hydrogen to form an oligomer product.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 14, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Uriah J. Kilgore, Steven M. Bischof, Orson L. Sydora
  • Patent number: 10807921
    Abstract: Disclosed herein is a catalyst system comprising (i) a heterocyclic 2-[(phosphinyl)aminyl]imine transition metal compound complex having Structure I wherein T is oxygen or sulfur, R1 and R2 are each independently a C1 to C20 organyl group consisting essentially of inert functional groups, R3 is hydrogen or a C1 to C20 organyl group, L is a C1 to C20 organylene group consisting essentially of inert functional groups, MXp represents a transition metal compound where M is a transition metal, X is a monoanion, and p is an integer from 1 to 6, Q is a neutral ligand, and q ranges from 0 to 6, and (ii) an organoaluminum compound. Also disclosed herein is a process comprising contacting (i) ethylene, (ii) a catalyst system comprising (a) a heterocyclic transition metal compound complex having Structure I as described herein and (b) an organoaluminum compound, and (iii) optionally hydrogen to form an oligomer product.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: October 20, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Uriah J. Kilgore, Steven M. Bischof
  • Patent number: 10774015
    Abstract: Disclosed herein are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising a heteroatomic ligand chromium compound complex of the type disclosed herein, and ii) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: September 15, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jared T. Fern, Orson L. Sydora, Uriah J. Kilgore, Steven M. Bischof, Eric R. Fernandez
  • Patent number: 10689311
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system comprising (a) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and (b) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: June 23, 2020
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Jared T. Fern, Orson L. Sydora, Uriah J. Kilgore, Steven M. Bischof, Eric R. Fernandez
  • Patent number: 10689312
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and ii) an aluminoxane. Ethylene can be contacted with an organic reaction medium to form an ethylene feedstock mixture prior to contact with the catalyst system. The ethylene feedstock mixture can be contacted with the catalyst system inside or outside of the reaction zone.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 23, 2020
    Assignee: Chevron Phillip Chemical Company, LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Jared T. Fern, Uriah J. Kilgore, Steven Ross Hutchison, Ray Rios, Eric R. Fernandez
  • Publication number: 20190375694
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and ii) an aluminoxane. Ethylene can be contacted with an organic reaction medium to form an ethylene feedstock mixture prior to contact with the catalyst system. The ethylene feedstock mixture can be contacted with the catalyst system inside or outside of the reaction zone.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: Steven M. BISCHOF, Orson L. SYDORA, Jared T. FERN, Uriah J. KILGORE, Steven Ross HUTCHISON, Ray RIOS, Eric R. FERNANDEZ
  • Publication number: 20190375693
    Abstract: Disclosed herein are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising a heteroatomic ligand chromium compound complex of the type disclosed herein, and ii) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: Jared T. FERN, Orson L. SYDORA, Uriah J. KILGORE, Steven M. BISCHOF, Eric R. FERNANDEZ