Patents by Inventor Uwe Griebenow

Uwe Griebenow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120091535
    Abstract: By providing a protection layer for suppressing stress relaxation in a tensile-stressed dielectric material during a dual stress liner approach, performance of N-channel transistors may be increased, while nevertheless maintaining a high degree of compatibility with conventional dual stress liner approaches.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 19, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Kai FROHBERG, Frank FEUSTEL, Thomas WERNER, Uwe GRIEBENOW
  • Patent number: 8158482
    Abstract: An asymmetric transistor configuration is disclosed in which asymmetric extension regions and/or halo regions may be combined with an asymmetric spacer structure which may be used to further adjust the overall dopant profile of the asymmetric transistor.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: April 17, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Uwe Griebenow, Maciej Wiatr
  • Patent number: 8110487
    Abstract: By incorporating a carbon species below the channel region of a P-channel transistor prior to the formation of the gate electrode structure, an efficient strain-inducing mechanism may provided, thereby enhancing performance of P-channel transistors. The position and size of the strain-inducing region may be determined on the basis of an implantation mask and respective implantation parameters, thereby providing a high degree of compatibility with conventional techniques, since the strain-inducing region may be incorporated at an early manufacturing stage, directly to respective “large area” contact elements.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: February 7, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Kai Frohberg, Christoph Schwan, Kerstin Ruttloff
  • Publication number: 20120025266
    Abstract: In sophisticated semiconductor devices, replacement gate approaches may be applied in combination with a process strategy for implementing a strain-inducing semiconductor material, wherein superior proximity of the strain-inducing semiconductor material and/or superior robustness of the replacement gate approach may be achieved by forming the initial gate electrode structures with superior uniformity and providing at least one cavity for implementing the strained channel regions in a very advanced manufacturing stage, i.e., after completing the basic transistor configuration.
    Type: Application
    Filed: May 27, 2011
    Publication date: February 2, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Uwe Griebenow, Jan Hoentschel, Thilo Scheiper, Sven Beyer
  • Patent number: 8105962
    Abstract: By providing a protection layer for suppressing stress relaxation in a tensile-stressed dielectric material during a dual stress liner approach, performance of N-channel transistors may be increased, while nevertheless maintaining a high degree of compatibility with conventional dual stress liner approaches.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: January 31, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kai Frohberg, Frank Feustel, Thomas Werner, Uwe Griebenow
  • Publication number: 20110291269
    Abstract: In a stacked semiconductor device, a Peltier element may be incorporated as a distributed element so as to provide active heat transfer from a high power device into a low power device, thereby achieving superior temperature control in stacked device configurations. For example, a CPU and a dynamic RAM device may be provided as a stacked configuration, wherein waste heat of the CPU may be efficiently distributed into the low power memory device.
    Type: Application
    Filed: April 29, 2011
    Publication date: December 1, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Uwe Griebenow, Jan Hoentschel, Thilo Scheiper, Sven Beyer
  • Publication number: 20110269278
    Abstract: In sophisticated semiconductor devices, stress memorization techniques may be applied on the basis of a silicon nitride material, which may be subsequently modified into a low-k dielectric material in order to obtain low-k spacer elements, thereby enhancing performance of sophisticated semiconductor devices. The modification of the initial silicon nitride-based spacer material may be accomplished on the basis of an oxygen implantation process.
    Type: Application
    Filed: December 9, 2010
    Publication date: November 3, 2011
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Jan Hoentschel, Andreas Kurz, Uwe Griebenow, Thilo Scheiper
  • Publication number: 20110266633
    Abstract: In a replacement gate approach, the semiconductor material or at least a significant portion thereof in a non-transistor structure, such as a precision resistor, an electronic fuse and the like, may be preserved upon replacing the semiconductor material in the gate electrode structures. To this end, an appropriate dielectric material may be provided at least prior to the removal of the semiconductor material in the gate electrode structures, without requiring significant modifications of established replacement gate approaches.
    Type: Application
    Filed: December 8, 2010
    Publication date: November 3, 2011
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Sven Beyer, Klaus Hempel, Roland Stejskal, Andy Wei, Thilo Scheiper, Andreas Kurz, Uwe Griebenow, Jan Hoentschel
  • Patent number: 8039342
    Abstract: In a process strategy for forming sophisticated high-k metal gate electrode structures in an early manufacturing phase, the dielectric cap material may be removed on the basis of a protective spacer element, thereby ensuring integrity of a silicon nitride sidewall spacer structure, which may preserve integrity of sensitive gate materials and may also determine the lateral offset of a strain-inducing semiconductor material.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 18, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Thilo Scheiper, Andy Wei
  • Patent number: 8034669
    Abstract: The drive current capability of a pull-down transistor and a pass transistor formed in a common active region may be adjusted on the basis of different strain levels obtained by providing at least one embedded semiconductor alloy in the active region, thereby providing a simplified overall geometric configuration of the active region. Hence, static RAM cells may be formed on the basis of a minimum channel length with a simplified configuration of the active region, thereby avoiding significant yield losses as may be observed in sophisticated devices, in which a pronounced variation of the transistor width is conventionally used to adjust the ratio of the drive currents for the pull-down and pass transistors.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: October 11, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel
  • Patent number: 8026134
    Abstract: During the manufacturing process for forming sophisticated transistor elements, the gate height may be reduced and a recessed drain and source configuration may be obtained in a common etch sequence prior to forming respective metal silicide regions. Since the corresponding sidewall spacer structure may be maintained during the etch sequence, controllability and uniformity of the silicidation process in the gate electrode may be enhanced, thereby obtaining a reduced degree of threshold variability. Furthermore, the recessed drain and source configuration may provide reduced overall series resistance and enhanced stress transfer efficiency.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 27, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Uwe Griebenow, Andy Wei, Jan Hoentschel, Thilo Scheiper
  • Publication number: 20110223732
    Abstract: Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.
    Type: Application
    Filed: May 10, 2011
    Publication date: September 15, 2011
    Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg, Heike Berthold, Katrin Reiche, Frank Feustel, Kerstin Ruttloff
  • Patent number: 8017504
    Abstract: In a manufacturing flow for adapting the band gap of the semiconductor material with respect to the work function of a metal-containing gate electrode material, a strain-inducing material may be deposited to provide an additional strain component in the channel region. For instance, a layer stack with silicon/carbon, silicon and silicon/germanium may be used for providing the desired threshold voltage for a metal gate while also providing compressive strain in the channel region.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 13, 2011
    Assignee: Globalfoundries Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg
  • Publication number: 20110215415
    Abstract: By locally adapting the size and/or density of a contact structure, for instance, within individual transistors or in a more global manner, the overall performance of advanced semiconductor devices may be increased. Hence, the mutual interaction between the contact structure and local device characteristics may be taken into consideration. On the other hand, a high degree of compatibility with conventional process strategies may be maintained.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Martin Gerhardt, Ralf Richter, Thomas Feudel, Uwe Griebenow
  • Publication number: 20110210398
    Abstract: In sophisticated semiconductor devices, a replacement gate approach may be applied, in which a channel semiconductor material may be provided through the gate opening prior to forming the gate dielectric material and the electrode metal. In this manner, specific channel materials may be provided in a late manufacturing stage for different transistor types, thereby providing superior transistor performance and superior flexibility in adjusting the electronic characteristics of the transistors.
    Type: Application
    Filed: November 2, 2010
    Publication date: September 1, 2011
    Inventors: Sven Beyer, Jan Hoentschel, Thilo Scheiper, Uwe Griebenow
  • Publication number: 20110211394
    Abstract: Storage transistors for flash memory areas in semiconductor devices may be provided on the basis of a self-aligned charge storage region. To this end, a floating spacer element may be provided in some illustrative embodiments, while, in other cases, the charge storage region may be efficiently embedded in the electrode material in a self-aligned manner during a replacement gate approach. Consequently, enhanced bit density may be achieved, since additional sophisticated lithography processes for patterning the charge storage region may no longer be required.
    Type: Application
    Filed: November 4, 2010
    Publication date: September 1, 2011
    Inventors: Thilo Scheiper, Sven Beyer, Uwe Griebenow, Jan Hoentschel
  • Publication number: 20110210380
    Abstract: In sophisticated semiconductor devices, the contact structure may be formed on the basis of contact bars formed in a lower portion of an interlayer dielectric material, which may then be contacted by contact elements having reduced lateral dimensions so as to preserve a desired low overall fringing capacitance. The concept of contact bars of reduced height level may be efficiently combined with sophisticated replacement gate approaches.
    Type: Application
    Filed: November 2, 2010
    Publication date: September 1, 2011
    Inventors: Thilo Scheiper, Sven Beyer, Uwe Griebenow, Jan Hoentschel, Andy Wei
  • Publication number: 20110210427
    Abstract: In sophisticated semiconductor devices, the initial strain component of a globally strained semiconductor layer may be substantially preserved during the formation of shallow trench isolations by using a rigid mask material, which may efficiently avoid or reduce a deformation of the semiconductor islands upon patterning the isolation trenches. Consequently, selected regions with high internal stress levels may be provided, irrespective of the height-to-length aspect ratio, which may limit the application of globally strained semiconductor layers in conventional approaches. Furthermore, in some illustrative embodiments, active regions of substantially relaxed strain state or of inverse strain type may be provided in addition to the highly strained active regions, thereby enabling an efficient process strategy for forming complementary transistors.
    Type: Application
    Filed: November 2, 2010
    Publication date: September 1, 2011
    Inventors: Jan Hoentschel, Sven Beyer, Uwe Griebenow, Thilo Scheiper
  • Publication number: 20110210389
    Abstract: A buried gate electrode structures may be formed in the active regions of sophisticated transistors by providing a recess in the active region and incorporating appropriate gate materials, such as a high-k dielectric material and a metal-containing electrode material. Due to the recessed configuration, the channel length and thus the channel controllability may be increased, without increasing the overall lateral dimensions of the transistor structure.
    Type: Application
    Filed: January 13, 2011
    Publication date: September 1, 2011
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Uwe Griebenow, Jan Hoentschel, Thilo Scheiper, Sven Beyer
  • Publication number: 20110201165
    Abstract: A non-conformal metal silicide in a transistor of recessed drain and source configuration may provide enhanced efficiency with respect to strain-inducing mechanisms, drain/source resistance and the like. For this purpose, in some cases, an amorphizing implantation process may be performed prior to the silicidation process, while in other cases an anisotropic deposition of the refractory metal may be used.
    Type: Application
    Filed: April 5, 2011
    Publication date: August 18, 2011
    Inventors: Jan Hoentschel, Uwe Griebenow, Andy Wei