Patents by Inventor Valery Sokolovskii

Valery Sokolovskii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10384192
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 20, 2019
    Assignee: Archer-Daniels-Midland Company
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A. W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Publication number: 20190233386
    Abstract: The present disclosure provides processes for the production of 2-5-furandicarboxylic acid (FDCA) and intermediates thereof by the chemocatalytic conversion of a furanic oxidation substrate. The present disclosure further provides processes for preparing derivatives of FDCA and FDCA-based polymers. In addition, the present disclosure provides crystalline preparations of FDCA, as well as processes for making the same.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: Valery Sokolovskii, Vincent J. Murphy, Thomas R. Boussie, Gary M. Diamond, Eric L. Dias, Guang Zhu, James M. Longmire, Stanley Herrmann, Staffan Torssell, Mayya Lavrenko
  • Patent number: 10208006
    Abstract: The present disclosure provides processes for the production of 2-5-furandicarboxylic acid (FDCA) and intermediates thereof by the chemocatalytic conversion of a furanic oxidation substrate. The present disclosure further provides processes for preparing derivatives of FDCA and FDCA-based polymers. In addition, the present disclosure provides crystalline preparations of FDCA, as well as processes for making the same.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: February 19, 2019
    Assignee: Stora Enso Oyj
    Inventors: Valery Sokolovskii, Vincent J. Murphy, Thomas R. Boussie, Gary M. Diamond, Eric L. Dias, Guang Zhu, James M. Longmire, Stanley Herrmann, Staffan Torssell, Mayya Lavrenko
  • Publication number: 20180345251
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 6, 2018
    Applicant: Archer-Daniels-Midland Company
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A.W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Patent number: 10137437
    Abstract: The present invention relates to a method for producing a supported catalyst, a catalyst which is obtainable using the method, and use thereof for the partial oxidation or ammoxidation of olefins, in particular for the oxidation of propene to acrolein, of isobutene to methacrolein, and/or the ammoxidation of propene to acrylonitrile. The method according to the invention includes the following steps: a) providing a solution in which precursor compounds of the catalytically active component are essentially completely dissolved in a suitable solvent; b) bringing the solution obtained in step a) into contact with a (chemically) inert, porous support having a specific surface of 1 to 500 m2/g; c) heat treatment of the material obtained in step b), in which the precursor compounds of the catalytically active component are converted to their oxides.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: November 27, 2018
    Assignee: Clariant Corpoation
    Inventors: Valery Sokolovskii, David Michael Lowe, Deepti Machiraju, Hongyi C. Hou, Gerhard Mestl, Claus G. Lugmair, Aaron B. Miller, Anthony F. Volpe, Jr.
  • Patent number: 10081612
    Abstract: Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 25, 2018
    Assignee: ARCHER-DANIELS-MIDLAND COMPANY
    Inventors: Valery Sokolovskii, Mayya Lavrenko, Alfred Hagemeyer, Eric L. Dias, James A. W. Shoemaker, Vincent J. Murphy
  • Patent number: 9993802
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: June 12, 2018
    Assignee: Archer Daniels Midland Company
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A. W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Publication number: 20170298036
    Abstract: Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
    Type: Application
    Filed: January 26, 2017
    Publication date: October 19, 2017
    Inventors: Valery SOKOLOVSKII, Mayya LAVRENKO, Alfred HAGEMEYER, Eric L. DIAS, James A. W. SHOEMAKER, Vincent J. MURPHY
  • Publication number: 20170197930
    Abstract: The present disclosure provides processes for the production of 2-5-furandicarboxylic acid (FDCA) and intermediates thereof by the chemocatalytic conversion of a furanic oxidation substrate. The present disclosure further provides processes for preparing derivatives of FDCA and FDCA-based polymers. In addition, the present disclosure provides crystalline preparations of FDCA, as well as processes for making the same.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 13, 2017
    Inventors: Valery Sokolovskii, Vincent J. Murphy, Thomas R. Boussie, Gary M. Diamond, Eric L. Dias, Guang Zhu, James M. Longmire, Stanley Herrmann, Staffan Torssell, Mayya Lavrenko
  • Patent number: 9682368
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 20, 2017
    Assignee: Rennovia Inc.
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A. W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Publication number: 20170165641
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Applicant: Rennovia Inc.
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A.W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Publication number: 20170120223
    Abstract: The present invention provides a porous metal-containing carbon-based material that is stable at high temperatures under aqueous conditions. The porous metal-containing carbon-based materials are particularly useful in catalytic applications. Also provided, are methods for making and using porous shaped metal-carbon products prepared from these materials.
    Type: Application
    Filed: April 18, 2016
    Publication date: May 4, 2017
    Applicant: Rennovia Inc.
    Inventors: Valery Sokolovskii, Alfred Hagemeyer, James A.W. Shoemaker, Elif Ispir Gürbüz, Guang Zhu, Eric L. Dias
  • Patent number: 9586920
    Abstract: Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 7, 2017
    Assignee: RENNOVIA INC.
    Inventors: Valery Sokolovskii, Mayya Lavrenko, Alfred Hagemeyer, Eric L. Dias, James A. W. Shoemaker, Vincent J. Murphy
  • Publication number: 20170015642
    Abstract: The present invention relates generally to processes for converting fructose-containing feedstocks to a product comprising 5-(hydroxymethyl)furfural (HMF) and water in the presence of water, solvent and an acid catalyst. In some embodiments, the conversion of fructose to HMF is controlled at a partial conversion endpoint characterized by a yield of HMF from fructose that does not exceed about 80 mol %. In these and other embodiments, the processes provide separation techniques for separating and recovering the product, unconverted fructose, solvent and acid catalyst to enable the effective recovery and reutilization of reaction components.
    Type: Application
    Filed: April 18, 2016
    Publication date: January 19, 2017
    Applicant: RENNOVIA, INC.
    Inventors: Valery Sokolovskii, Eric L. Dias, Hong X. Jiang, James M. Longmire, Vincent J. Murphy, Christopher Paul Dunckley, Gary M. Diamond, Thomas R. Boussie, James A.W. Shoemaker, Liza Lopez Soto
  • Publication number: 20160194298
    Abstract: Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
    Type: Application
    Filed: December 2, 2015
    Publication date: July 7, 2016
    Inventors: Valery SOKOLOVSKII, Mayya LAVRENKO, Alfred HAGEMEYER, Eric L. DIAS, James A. W. SHOEMAKER, Vincent J. MURPHY
  • Publication number: 20160051967
    Abstract: The present invention relates to a method for producing a supported catalyst, a catalyst which is obtainable using the method, and use thereof for the partial oxidation or ammoxidation of olefins, in particular for the oxidation of propene to acrolein, of isobutene to methacrolein, and/or the ammoxidation of propene to acrylonitrile. The method according to the invention includes the following steps: a) providing a solution in which precursor compounds of the catalytically active component are essentially completely dissolved in a suitable solvent; b) bringing the solution obtained in step a) into contact with a (chemically) inert, porous support having a specific surface of 1 to 500 m2/g; c) heat treatment of the material obtained in step b), in which the precursor compounds of the catalytically active component are converted to their oxides.
    Type: Application
    Filed: April 11, 2014
    Publication date: February 25, 2016
    Inventors: Valery Sokolovskii, David Michael Lowe, Deepti Machiraju, Hongyi C. Hou, Gerhard Mestl, Claus G. Lugmair, Aaron B. Miller, Anthony F. Volpe, JR.
  • Patent number: 9205412
    Abstract: Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 8, 2015
    Assignee: CLARIANT CORPORATION
    Inventors: Aaron B. Miller, Malati Raghunath, Valery Sokolovskii, Claus G. Lugmair, Anthony F. Volpe, Jr., Wenqin Shen, Wayne Turbeville
  • Publication number: 20150321187
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 12, 2015
    Applicant: RENNOVIA INC.
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A.W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Patent number: 9175232
    Abstract: This invention relates to a catalyst and method for hydrodesulfurizing naphtha. More particularly, a Co/Mo metal hydrogenation component is loaded on a high temperature alumina support in the presence of a dispersion aid to produce a catalyst that is then used for hydrodesulfurizing naphtha. The high temperature alumina support has a defined surface area that minimizes olefin saturation.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 3, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jason Wu, Edward S Ellis, Valery Sokolovskii, David Michael Lowe, Anthony F. Volpe, Jr.
  • Publication number: 20140249334
    Abstract: Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Clariant Corporation
    Inventors: Aaron B. MILLER, Malati RAGHUNATH, Valery SOKOLOVSKII, Claus G. LUGMAIR, Anthony F. VOLPE, JR., Wenqin SHEN, Wayne TURBEVILLE