Patents by Inventor Van H. Le

Van H. Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210050455
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 18, 2021
    Inventors: Van H. LE, Gilbert DEWEY, Rafael RIOS, Jack T. KAVALIEROS, Marko RADOSAVLJEVIC, Kent E. MILLARD, Marc C. FRENCH, Ashish AGRAWAL, Benjamin CHU-KUNG, Ryan E. ARCH
  • Publication number: 20210013208
    Abstract: Disclosed herein are gated thyristors and related devices and techniques. In some embodiments, an integrated circuit (IC) device may include a metal portion and a gated thyristor on the metal portion. The gated thyristor may include a stack of alternating p-type and n-type material layers, and the stack may be on the metal portion. The IC device may further include a gate line spaced apart from one of the material layers by a gate dielectric.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 14, 2021
    Applicant: Intel Corporation
    Inventors: Van H. Le, Ravi Pillarisetty, Abhishek A. Sharma
  • Publication number: 20200411528
    Abstract: An integrated circuit includes one or more layers of insulating material defining a vertical bore with a first portion and a second portion. A capacitor structure is in the first portion of the vertical bore and includes a first electrode, a second electrode, and a dielectric between the first electrode and the second electrode. A transistor structure is in the second portion of the vertical bore and includes a third electrode extending into the second portion of the vertical bore, a layer of semiconductor material in contact with the first electrode and in contact with the second electrode, and a dielectric between the semiconductor material and the insulating material. A fourth electrode wraps around the transistor structure such that the dielectric is between the semiconductor material and the fourth electrode. The capacitor structure can be above or below the transistor structure in a self-aligned vertical arrangement.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Charles C. Kuo, Abhishek A. Sharma, Van H. Le, Jack Kavalieros
  • Publication number: 20200411695
    Abstract: A transistor includes a semiconductor body including a material such as an amorphous or polycrystalline material, for example and a gate stack on a first portion of the body. The gate stack includes a gate dielectric on the body, and a gate electrode on the gate dielectric. The transistor further includes a first metallization structure on a second portion of the body and a third metallization structure on a third portion of the body, opposite to the second portion. The transistor further includes a ferroelectric material on at least a fourth portion of the body, where the ferroelectric material is between the gate stack and the first or second metallization structure.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Seung Hoon Sung, Gilbert Dewey, Abhishek Sharma, Van H. Le, Jack Kavalieros
  • Publication number: 20200411669
    Abstract: Embodiments herein describe techniques for a three dimensional transistor above a substrate. A three dimensional transistor includes a channel structure, where the channel structure includes a channel material and has a source area, a drain area, and a channel area between the source area and the drain area. A source electrode is coupled to the source area, a drain electrode is coupled to the drain area, and a gate electrode is around the channel area. An electrode selected from the source electrode, the drain electrode, or the gate electrode is in contact with the channel material on a sidewall of an opening in an inter-level dielectric layer or a surface of the electrode. The electrode is further in contact with the channel structure including the source area, the drain area, or the channel area. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Abhishek SHARMA, Willy RACHMADY, Van H. LE, Jack T. KAVALIEROS, Gilbert DEWEY, Matthew METZ
  • Publication number: 20200411525
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Jared STOEGER, Yu-Wen HUANG, Shu ZHOU
  • Publication number: 20200411526
    Abstract: A device is disclosed. The device includes a plurality of capacitors, a transistor connected to each of the plurality of capacitors, and a first dielectric layer and a second dielectric layer on respective adjacent sides of adjacent capacitors of the plurality of capacitors. The first dielectric layer and the second dielectric layer include a top portion and a bottom portion, the top portion of the first dielectric layer and the top portion of the second dielectric layer extend from respective directions and meet at a top portion of a space between the adjacent capacitors, the bottom portion of the first dielectric layer and the bottom portion of the second dielectric layer extend from respective directions and meet at a bottom portion of a space between the adjacent capacitors.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Abhishek SHARMA, Willy RACHMADY, Van H. LE, Travis W. LAJOIE, Urusa ALAAN, Hui Jae YOO, Sean MA, Aaron LILAK
  • Publication number: 20200411520
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
  • Publication number: 20200411635
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. The semiconductor device further includes a capacitor having a bottom plate above the substrate, a capacitor dielectric layer adjacent to and above the bottom plate, and a top plate adjacent to and above the capacitor dielectric layer. The bottom plate, the capacitor dielectric layer, and the top plate are within the first ILD layer or the second ILD layer. Furthermore, an air gap is formed next to the top plate and below a top surface of the second ILD layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
  • Publication number: 20200411426
    Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Ting CHEN, Vinaykumar V. HADAGALI
  • Patent number: 10878889
    Abstract: A high retention time memory element is described that has dual gate devices. A memory element has a write transistor with a gate having a source coupled to a write bit line, a gate coupled to a write line, and a drain coupled to a storage node, wherein a value is written to the storage node by enabling the gate and applying the value to the bit line, and a read transistor having a source coupled to a read line, a gate coupled to the storage node, and a drain coupled to a read bit line, wherein the value of the storage node is sensed by applying a current to the source and reading the sense line to determine a status of the gate.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: December 29, 2020
    Assignee: Intel Corporation
    Inventors: Rafael Rios, Gilbert Dewey, Van H. Le, Jack Kavalieros, Mesut Meterelliyoz
  • Patent number: 10872660
    Abstract: In one embodiment, systems, methods, and apparatus are described that can reduce the peak current through semiconductor memory devices such as RRAM devices. In one embodiment, transition metal dichalcogenide (TMD) materials can be used to in connection with both the transistors and the memory (for example, RRAM) devices. In one embodiment, two-dimensional (2D) materials, that is, materials that are on the order of a few angstroms thick can be used in connection with both the transistors and the memory (for example, RRAM) devices. In one embodiment, the TMD layer(s) and/or the 2D material(s) can act as a ballast to the RRAM device that can control the current flow through the RRAM device. In one embodiment, the systems, methods, and apparatus can serve to reduce the current as the voltage increases at a predetermined range, a property that can be referred to as negative differential resistance (NDR).
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 22, 2020
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Ravi Pillarisetty, Van H. Le, Gilbert Dewey
  • Patent number: 10847656
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Marko Radosavljevic, Kent E. Millard, Marc C. French, Ashish Agrawal, Benjamin Chu-Kung, Ryan E. Arch
  • Publication number: 20200357929
    Abstract: Described is an apparatus which comprises: a gate comprising a metal; a first layer adjacent to the gate, the first layer comprising a dielectric material; a second layer adjacent to the first layer, the second layer comprising a second material; a third layer adjacent to the second layer, the third layer comprising a third material including an amorphous metal oxide; a fourth layer adjacent to the third layer, the fourth layer comprising a fourth material, wherein the fourth and second materials are different than the third material; a source partially adjacent to the fourth layer; and a drain partially adjacent to the fourth layer.
    Type: Application
    Filed: September 29, 2017
    Publication date: November 12, 2020
    Applicant: INTEL CORPORATION
    Inventors: Van H. Le, Abhishek A. Sharma, Gilbert Dewey, Kent Millard, Jack Kavalieros, Shriram Shivaraman, Tristan A. Tronic, Sanaz Gardner, Justin R. Weber, Tahir Ghani, Li Huey Tan, Kevin Lin
  • Publication number: 20200350423
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 5, 2020
    Applicant: Intel Corporation
    Inventors: Ravi Pillarisetty, Van H. Le, Nicole K. Thomas, Hubert C. George, Jeanette Roberts, Payam Amin, Zachary R. Yoscovits, Roman Caudillo, James S. Clarke, Roza Kotlyar, Kanwaljit Singh
  • Publication number: 20200350412
    Abstract: Thin film transistors having alloying source or drain metals are described. In an example, an integrated circuit structure includes a semiconducting oxide material over a gate electrode. A pair of conductive contacts is on a first region of the semiconducting oxide material. A second region of the semiconducting oxide material is between the pair of conductive contacts. The pair of conductive contacts includes a metal species. The metal species is in the first region of the semiconducting oxide material but not in the second region of the semiconducting oxide material.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Gregory GEORGE, Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Juan G. ALZATE VINASCO
  • Publication number: 20200343379
    Abstract: Embodiments herein describe techniques for a semiconductor device, which may include a substrate, a metallic encapsulation layer above the substrate, and a gate electrode above the substrate and next to the metallic encapsulation layer. A channel layer may be above the metallic encapsulation layer and the gate electrode, where the channel layer may include a source area and a drain area. In addition, a source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 27, 2017
    Publication date: October 29, 2020
    Inventors: Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Gilbert DEWEY, Shriram SHIVARAMAN, Inanc MERIC, Benjamin CHU-KUNG
  • Patent number: 10818799
    Abstract: Disclosed herein are vertical transistor devices and techniques. In some embodiments, a device may include: a semiconductor substrate; a first transistor in a first layer on the semiconductor substrate; and a second transistor in a second layer, wherein the second transistor includes a first source/drain (S/D) contact and a second S/D contact, the first layer is between the second layer and the semiconductor substrate, and the first S/D contact is between the second S/D contact and the first layer. In some embodiments, a device may include: a semiconductor substrate; and a transistor above the semiconductor substrate, wherein the transistor includes a channel and a source/drain (S/D) contact between the channel and the semiconductor substrate.
    Type: Grant
    Filed: December 24, 2016
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Abhishek A. Sharma, Van H. Le, Gilbert W. Dewey, Willy Rachmady
  • Publication number: 20200335635
    Abstract: Thin film transistors having double gates are described. In an example, an integrated circuit structure includes an insulator layer above a substrate. A first gate stack is on the insulator layer. A polycrystalline channel material layer is on the first gate stack. A second gate stack is on a first portion of the polycrystalline channel material layer, the second gate stack having a first side opposite a second side. A first conductive contact is adjacent the first side of the second gate stack, the first conductive contact on a second portion of the channel material layer. A second conductive contact is adjacent the second side of the second gate stack, the second conductive contact on a third portion of the channel material layer.
    Type: Application
    Filed: March 22, 2018
    Publication date: October 22, 2020
    Inventors: Abhishek A. SHARMA, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Gilbert DEWEY
  • Patent number: 10811461
    Abstract: Substrates, assemblies, and techniques for a transmission gate that includes an n-type back end transistor and a p-type back end transistor in parallel with the n-type back end transistor. The transmission gate can be on a non-silicon substrate and include a second gate, a p-type semiconducting layer over the second gate, an n-type semiconducting layer over the p-type semiconducting layer, a bit line over the n-type semiconducting layer, a first gate over the n-type semiconducting layer, and a source line over the n-type semiconducting layer. The transmission gate may be coupled to a memory element.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Ravi Pillarisetty, Van H. Le, Gilbert W. Dewey