Patents by Inventor Vernon Wong

Vernon Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11217734
    Abstract: Patterned ceramic wavelength-converting phosphor structures may be bonded to an LED to form a pcLED. The phosphor structures are patterned with features that provide enhanced oxygen permeability to an adhesive bond used to attach the phosphor structure to the LED. The enhanced oxygen permeability reduces transient degradation of the pcLED occurring in the region of the adhesive bond.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: January 4, 2022
    Assignee: Lumileds LLC
    Inventors: Kentaro Shimizu, Hisashi Masui, Marcel Rene Bohmer, Vernon Wong
  • Publication number: 20200411728
    Abstract: A light emitting package and method of making the package are described. The package contains an LED bonded to a light converting layer using an adhesive. The adhesive is jet printed, mask sprayed or extruded onto one of the surfaces before bonding. The adhesive has materials in different sections that differ in refractive index, oxygen permeability, and/or heat conductivity. The materials are formed in concentric rings around the adhesive center, islands or lines and are disposed to provide optical lensing or increasing permeability/heat conductivity with decreasing distance from the center. A substantially-reflective optical side coat surrounds the LED, adhesive layer and connecting structure.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Vernon Wong, Ken Shimizu, Daniel B. Roitman
  • Patent number: 10862007
    Abstract: A light emitting package and method of making the package are described. The package contains an LED bonded to a light converting layer using an adhesive. The adhesive is jet printed, mask sprayed or extruded onto one of the surfaces before bonding. The adhesive has materials in different sections that differ in refractive index, oxygen permeability, and/or heat conductivity. The materials are formed in concentric rings around the adhesive center, islands or lines and are disposed to provide optical lensing or increasing permeability/heat conductivity with decreasing distance from the center. A substantially-reflective optical side coat surrounds the LED, adhesive layer and connecting structure.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 8, 2020
    Assignee: Lumileds LLC
    Inventors: Vernon Wong, Ken Shimizu, Daniel B. Roitman
  • Publication number: 20200238441
    Abstract: Method and systems for crystallizing a thin film provide an optics system configured to produce a laser spot beam directed towards the thin film and truncate the laser spot beam before the laser spot beam comes into contact with the thin film. The truncated laser spot beam is continually translated in a first direction while irradiating an amorphous silicon area of the thin film to generate a molten zone in the irradiated amorphous silicon area, where the thin film cools and solidifies to form crystal grains.
    Type: Application
    Filed: October 15, 2018
    Publication date: July 30, 2020
    Inventors: James S. IM, Wenkai PAN, Ruobing SONG, Insung CHOI, Vernon WONG
  • Publication number: 20200212266
    Abstract: Patterned ceramic wavelength-converting phosphor structures may be bonded to an LED to form a pcLED. The phosphor structures are patterned with features that provide enhanced oxygen permeability to an adhesive bond used to attach the phosphor structure to the LED. The enhanced oxygen permeability reduces transient degradation of the pcLED occurring in the region of the adhesive bond.
    Type: Application
    Filed: October 11, 2019
    Publication date: July 2, 2020
    Inventors: Kentaro SHIMIZU, Hisashi MASUI, Marcel Rene BOHMER, Vernon WONG
  • Patent number: 10566216
    Abstract: Disclosed are methods and apparatuses for recirculating gas in an equipment front end module (“EFEM”), including the ability to provide a gas during recirculation and control the gas flow, pressure, and composition of the environment in the EFEM during recirculation.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: February 18, 2020
    Assignee: Lam Research Corporation
    Inventors: Brandon Lee Senn, Peter R. Wassei, Scott Vernon Wong, Silvia Rocio Aguilar Amaya, Todd Anthony Lopes, Richard Howard Gould, James Donald Keller, Steven Edmund Pracko
  • Publication number: 20180358239
    Abstract: Disclosed are methods and apparatuses for recirculating gas in an equipment front end module (“EFEM”), including the ability to provide a gas during recirculation and control the gas flow, pressure, and composition of the environment in the EFEM during recirculation.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Brandon Lee Senn, Peter R. Wassei, Scott Vernon Wong, Silvia Rocio Aguilar Amaya, Todd Anthony Lopes, Richard Howard Gould, James Donald Keller, Steven Edmund Pracko
  • Patent number: 8521461
    Abstract: A processing system for delivering a process gas to a reaction chamber using a recipe having a recipe flow rate is provided. The processing system includes a gas flow delivery system configured for delivering the process gas, wherein said gas flow delivery system controlled by a mass flow controller (MFC) to an orifice. The predicted flow rate is previously computed by pressurizing a gas. The predicted flow rate further being previously computed measuring a set of upstream pressure values of the gas via at least one sensor. The processing system also includes a programmed computing device configured for applying a calibration factor of a set of calibration factors to determine the predicted flow rate, the calibration factor being a ratio of an average of the set of upstream pressure values to an average of a set of golden upstream pressure values.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 27, 2013
    Assignee: Lam Research Corporation
    Inventors: Iqbal A. Shareef, James V. Tietz, Vernon Wong, Richard J. Meinecke
  • Patent number: 8202393
    Abstract: A gas distribution system for supplying a gas mixture to a plasma process chamber is provided. A first valve arrangement is connected to upstream ends of a first gas line and a second gas line. A second valve arrangement is connected to downstream ends of the first gas line and the second gas line. A first gas distribution outlet line is connected between a gas supply and the first valve arrangement and a first chamber inlet line connected between the second valve arrangement and the plasma process chamber. A first evacuation line is connected to the first gas line at a location between the first valve arrangement and the second valve arrangement. A second evacuation line is connected to the second gas line at a location between the first valve arrangement and the second valve arrangement. The first evacuation line and second evacuation line are in fluid communication with a vacuum line.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: June 19, 2012
    Assignee: Lam Research Corporation
    Inventors: Harry P. Wong, Vernon Wong, Christopher Charles Griffin, Mark Taskar
  • Patent number: 8150646
    Abstract: A method for delivering a process gas to a reaction chamber of a plasma processing system using a recipe having a recipe flow rate is provided. The method includes delivering the process gas by a gas flow delivery system controlled by a mass flow controller (MFC) to an orifice. The predicted flow rate is previously computed by pressurizing a gas. The predicted flow rate further being previously computed measuring a set of upstream pressure values of the gas via at least one pressure sensor. The method also includes applying, using a programmed computing device, a calibration factor of a set of calibration factors to determine the predicted flow rate, the calibration factor being a ratio of an average of the set of upstream pressure values to an average of a set of golden upstream pressure values.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 3, 2012
    Assignee: Lam Research Corporation
    Inventors: Iqbal A. Shareef, James V. Tietz, Vernon Wong, Richard J. Meinecke
  • Publication number: 20110029268
    Abstract: A method for delivering a process gas to a reaction chamber of a plasma processing system using a recipe having a recipe flow rate is provided. The method includes delivering the process gas by a gas flow delivery system controlled by a mass flow controller (MFC) to an orifice. The predicted flow rate is previously computed by pressurizing a gas. The predicted flow rate further being previously computed measuring a set of upstream pressure values of the gas via at least one pressure sensor. The method also includes applying, using a programmed computing device, a calibration factor of a set of calibration factors to determine the predicted flow rate, the calibration factor being a ratio of an average of the set of upstream pressure values to an average of a set of golden upstream pressure values.
    Type: Application
    Filed: September 21, 2010
    Publication date: February 3, 2011
    Inventors: Iqbal A. Shareef, James V. Tietz, Vernon Wong, Richard J. Meinecke
  • Patent number: 7881886
    Abstract: A method for determining an actual gas flow rate as gas flows through a gas flow delivery system is provided. The method includes sending the gas through the gas flow delivery system into a gas conduit, wherein a section of the gas conduit is widened to form an orifice. The method also includes pressurizing the gas to create a choked flow condition within the orifice of the gas conduit. The method further includes measuring upstream pressure of the gas via a set of pressure sensors. The method yet also includes calculating the actual flow rate based on the upstream pressure of the orifice of the gas conduit.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: February 1, 2011
    Assignee: Lam Research Corporation
    Inventors: Iqbal A. Shareef, James V. Tietz, Vernon Wong, Richard J. Meinecke
  • Patent number: 7835874
    Abstract: A gas flow rate verification apparatus is provided for shared use in a multiple tool semiconductor processing platform. The gas flow rate verification apparatus is defined to measure a pressure rate of rise and temperature within a test volume for determination of a corresponding gas flow rate. The apparatus includes first and second volumes, wherein the second volume is larger than the first volume. The apparatus also includes first and second pressure measurement devices, wherein the second pressure measurement device is capable of measuring higher pressures. Based on the target gas flow rate to be measured, either the first or second volume can be selected as the test volume, and either the first or second pressure measurement device can be selected to measure the pressure in the test volume. Configurability of the apparatus enables accurate measurement of gas flow rates over a broad range and in an time efficient manner.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: November 16, 2010
    Assignee: Lam Research Corporation
    Inventors: Vernon Wong, Richard J. Meinecke
  • Patent number: 7822570
    Abstract: A method for determining an actual gas flow rate in a reaction chamber of a plasma processing system is provided. The method includes delivering gas by a gas flow delivery system controlled by a mass flow controller (MFC) to an orifice, which is located upstream from the reaction chamber. The method also includes pressurizing the gas to create a choked flow condition within the orifice. The method further includes measuring a set of upstream pressure values of the gas via a set of pressure sensors. The method yet also includes applying a calibration factor of a set of calibration factors to determine the actual flow rate. The calibration factor is a ratio of an average of the set of upstream pressure values to an average of a set of golden upstream pressure values, which is associated with an indicated flow rate for an MFC.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: October 26, 2010
    Assignee: Lam Research Corporation
    Inventors: Iqbal A. Shareef, James V. Tietz, Vernon Wong, Richard J. Meinecke
  • Publication number: 20090148499
    Abstract: Combinations of hydrophilic and hydrophobic entities in a biodegradable sustained release implant are shown to modulate each other's rate of release. Formulations of a therapeutically active agent and modulator provide substantially constant rate of release for an extended period of time.
    Type: Application
    Filed: February 10, 2009
    Publication date: June 11, 2009
    Applicant: ALLERGAN, INC.
    Inventors: Vernon WONG, Frank Kochinke
  • Publication number: 20090061640
    Abstract: A gas distribution system for supplying a gas mixture to a plasma process chamber is provided. A first valve arrangement is connected to upstream ends of a first gas line and a second gas line. A second valve arrangement is connected to downstream ends of the first gas line and the second gas line. A first gas distribution outlet line is connected between a gas supply and the first valve arrangement and a first chamber inlet line connected between the second valve arrangement and the plasma process chamber. A first evacuation line is connected to the first gas line at a location between the first valve arrangement and the second valve arrangement. A second evacuation line is connected to the second gas line at a location between the first valve arrangement and the second valve arrangement. The first evacuation line and second evacuation line are in fluid communication with a vacuum line.
    Type: Application
    Filed: August 22, 2008
    Publication date: March 5, 2009
    Applicant: Lam Research Corporation
    Inventors: Harry P. Wong, Vernon Wong, Christopher Charles Griffin, Mark Taskar
  • Publication number: 20080195332
    Abstract: A gas flow rate verification apparatus is provided for shared use in a multiple tool semiconductor processing platform. The gas flow rate verification apparatus is defined to measure a pressure rate of rise and temperature within a test volume for determination of a corresponding gas flow rate. The apparatus includes first and second volumes, wherein the second volume is larger than the first volume. The apparatus also includes first and second pressure measurement devices, wherein the second pressure measurement device is capable of measuring higher pressures. Based on the target gas flow rate to be measured, either the first or second volume can be selected as the test volume, and either the first or second pressure measurement device can be selected to measure the pressure in the test volume. Configurability of the apparatus enables accurate measurement of gas flow rates over a broad range and in an time efficient manner.
    Type: Application
    Filed: April 17, 2008
    Publication date: August 14, 2008
    Applicant: Lam Research Corporation
    Inventors: Vernon Wong, Richard J. Meinecke
  • Publication number: 20080124377
    Abstract: Combinations of hydrophilic and hydrophobic entities in a biodegradable sustained release implant are shown to modulate each other's rate of release. Formulations of a therapeutically active agent and modulator provide substantially constant rate of release for an extended period of time.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 29, 2008
    Applicant: ALLERGAN, INC.
    Inventors: Vernon Wong, Frank Kochinke
  • Publication number: 20080115560
    Abstract: A method for determining an actual gas flow rate in a reaction chamber of a plasma processing system is provided. The method includes delivering gas fay a gas flow delivery system controlled by a mass flow controller (MFC) to an orifice, which is located upstream from the reaction chamber. The method also includes pressurizing the gas to create a choked flow condition within the orifice. The method further includes measuring a set of upstream pressure values of the gas via a set of pressure sensors. The method yet also includes applying a calibration factor of a set of calibration factors to determine the actual flow rate. The calibration factor is a ratio of an average of the set of upstream pressure values to an average of a set of golden upstream pressure values, which is associated with an indicated flow rate for an MFC.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 22, 2008
    Inventors: Iqbal A. Shareef, James V. Tietz, Vernon Wong, Richard J. Meinecke
  • Patent number: 7376520
    Abstract: A gas flow rate verification apparatus is provided for shared use in a multiple tool semiconductor processing platform. The gas flow rate verification apparatus is defined to measure a pressure rate of rise and temperature within a test volume for determination of a corresponding gas flow rate. The apparatus includes first and second volumes, wherein the second volume is larger than the first volume. The apparatus also includes first and second pressure measurement devices, wherein the second pressure measurement device is capable of measuring higher pressures. Based on the target gas flow rate to be measured, either the first or second volume can be selected as the test volume, and either the first or second pressure measurement device can be selected to measure the pressure in the test volume. Configurability of the apparatus enables accurate measurement of gas flow rates over a broad range and in an time efficient manner.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: May 20, 2008
    Assignee: Lam Research Corporation
    Inventors: Vernon Wong, Richard J. Meinccke