Patents by Inventor Vijayen S. Veerasamy

Vijayen S. Veerasamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10590695
    Abstract: Certain example embodiments of this invention relate to composite pillar arrangements for VIG units that include both harder and softer materials. The softer materials are located on the outside or extremities of the central, harder pillar material. In certain example embodiments, a high aspect ratio mineral lamellae is separated by an organic “glue” or polymer. When provided around a high strength pillar, the combination of the pillar and such a nano-composite structure may advantageously result in superior strength compared to a monolithic system, e.g., where significant wind loads, thermal stresses, and/or the like are encountered.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: March 17, 2020
    Assignee: GUARDIAN GLASS, LLC.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20200039874
    Abstract: Certain example embodiments relate to ultra-fast laser treatment of silver-inclusive (low-emissivity) low-E coatings, coated articles including such coatings, and/or associated methods. The low-E coating is formed on a substrate (e.g., borosilicate or soda lime silica glass), with the low-E coating including at least one sputter-deposited silver-based layer, and with each said silver-based layer being sandwiched between one or more dielectric layers. The low-E coating is exposed to laser pulses having a duration of no more than 10?12 seconds, a wavelength of 355-500 nm, and an energy density of more than 30 kW/cm2. The exposing is performed so as to avoid increasing temperature of the low-E coating to more than 300 degrees C. while also reducing (a) grain boundaries with respect to, and vacancies in, each said silver-based layer, (b) each said silver-based layer's refractive index, and (c) emissivity of the low-E coating compared to its as-deposited form.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 6, 2020
    Inventors: Vijayen S. VEERASAMY, Bernd DISTELDORF
  • Patent number: 10431354
    Abstract: Certain example embodiments of this invention relate to methods for large area graphene precipitation onto glass, and associated articles/devices. For example, a coated article including a graphene-inclusive film on a substrate, and/or a method of making the same, is provided. A metal-inclusive catalyst layer (e.g., of or including Ni and/or the like) is disposed on the substrate. The substrate with the catalyst layer thereon is exposed to a precursor gas and a strain-inducing gas at a temperature of no more than 900 degrees C. Graphene is formed and/or allowed to form both over and contacting the catalyst layer, and between the substrate and the catalyst layer, in making the coated article. The catalyst layer, together with graphene formed thereon, is removed, e.g., through excessive strain introduced into the catalyst layer as associated with the graphene formation. Products including such articles, and/or methods of making the same, also are contemplated herein.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: October 1, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Anastasios John Hart, Daniel Quinn McNerny
  • Patent number: 10394405
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: August 27, 2019
    Assignee: GUARDIAN GLASS, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Patent number: 10343949
    Abstract: A coated article includes a glass substrate supporting a coating. The coating may include, moving away from the glass substrate, a layer comprising diamond-like carbon (DLC); a layer comprising zinc oxide, wherein a concentration of OH-groups at a surface of the layer comprising zinc oxide farthest from the glass substrate is no greater than about 40%; and a layer comprising aluminum nitride on the glass substrate over and directly contacting the layer comprising zinc oxide. The DLC layer may be temporary, and designed to be burned off during heat treatment.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: July 9, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Jens-Peter Muller, Herbert Lage, Thorsten Frost, Vijayen S. Veerasamy
  • Publication number: 20190187836
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 20, 2019
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Patent number: 10280680
    Abstract: Certain example embodiments relate to vacuum insulating glass units having pump-out hole seals formed in connection with solder alloys that, when reactively reflowed, wet pre-coated metallic coatings, and/or associated methods. The alloys may be based on materials that form seals at temperatures that will not de-temper glass and/or decompose a laminate, and/or remain hermetic and lack porous structures in their bulks. SAC, InAg, and/or other preform materials may be used in different example embodiments.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 7, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Patricia Tucker
  • Publication number: 20190127271
    Abstract: Certain example embodiments of this invention relate to coated articles including noble metal (e.g., Ag) and polymeric hydrogenated diamond like carbon (DLC) (e.g., a-C:H, a-C:H:O) composite material having antibacterial and photocatalytic properties, and/or methods of making the same. A glass substrate supports a buffer layer, a matrix comprising the noble metal and DLC, a proton-conducting layer that may comprising zirconium oxide in certain example embodiments, and a layer comprising titanium oxide. The layer comprising titanium oxide may be photocatalytic and optionally may further include carbon and/or nitrogen. The proton-conducting layer may facilitate the creation of electron-hole pairs and, in turn, promote the antibacterial properties of the coated article. The morphology of the layer comprising titanium oxide and/or channels formed therein may enable Ag ions produced from matrix to migrate therethrough.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 2, 2019
    Inventor: Vijayen S. VEERASAMY
  • Publication number: 20190127272
    Abstract: Certain example embodiments of this invention relate to coated articles including noble metal (e.g., Ag) and polymeric hydrogenated diamond like carbon (DLC) (e.g., a-C:H, a-C:H:O) composite material having antibacterial and photocatalytic properties, and/or methods of making the same. A glass substrate supports a buffer layer, a matrix comprising the noble metal and DLC, a proton-conducting layer that may comprising zirconium oxide in certain example embodiments, and a layer comprising titanium oxide. The layer comprising titanium oxide may be photocatalytic and optionally may further include carbon and/or nitrogen. The proton-conducting layer may facilitate the creation of electron-hole pairs and, in turn, promote the antibacterial properties of the coated article. The morphology of the layer comprising titanium oxide and/or channels formed therein may enable Ag ions produced from matrix to migrate therethrough.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 2, 2019
    Inventor: Vijayen S. VEERASAMY
  • Patent number: 10229364
    Abstract: In certain example embodiments, moisture sensors, defoggers, etc., and/or related methods, are provided. More particularly, certain example embodiments relate to moisture sensors and/or defoggers that may be used in various applications such as, for example, refrigerator/freezer merchandisers, vehicle windows, building windows, etc. When condensation or moisture is detected, an appropriate action may be taken (e.g., actuating windshield wipers, turning on a defroster, triggering the heating of a merchandiser door or window, etc.). Bayesian approaches optionally may be implemented in certain example embodiments in an attempt to improve moisture detection accuracy. For instance, models of various types of disturbances may be developed and, based on live data and a priori information known about the model, a probability of the model being accurate is calculated. If a threshold value is met, the model may be considered a match and, optionally, a corresponding appropriate action may be taken.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 12, 2019
    Assignee: Guardian Glass, LLC
    Inventor: Vijayen S. Veerasamy
  • Patent number: 10222923
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 5, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jason Blush, Eric W. Akkashian, Willem Den Boer, Alexey Krasnov
  • Publication number: 20190009371
    Abstract: Certain example embodiments of this invention relate to techniques for laser ablating/scribing peripheral edges of a coating (e.g., a low-emissivity, mirror, or other coating) on a glass or other substrate in a pre- or post-laminated assembly, pre- or post-assembled insulated glass unit, and/or other product, in order to slow or prevent corrosion of the coating. For example, a 1064 nm or other wavelength laser may be used to scribe lines into the metal and/or metallic layer(s) in a low-emissivity or other coating provided in an already-laminated or already-assembled insulated glass unit or other product, e.g., around its periphery. The scribe lines decrease electron mobility from the center of the coating to the environment and, thus, slow and sometimes even prevent the onset of electrochemical corrosion. Associated products, methods, and kits relating to same also are contemplated herein.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 10, 2019
    Inventors: Vijayen S. VEERASAMY, Robert A. VANDAL
  • Publication number: 20190009501
    Abstract: Certain example embodiments of this invention relate to techniques for laser ablating/scribing peripheral edges of a coating (e.g., a low-emissivity, mirror, or other coating) on a glass or other substrate in a pre- or post-laminated assembly, pre- or post-assembled insulated glass unit, and/or other product, in order to slow or prevent corrosion of the coating. For example, a 1064 nm or other wavelength laser may be used to scribe lines into the metal and/or metallic layer(s) in a low-emissivity or other coating provided in an already-laminated or already-assembled insulated glass unit or other product, e.g., around its periphery. The scribe lines decrease electron mobility from the center of the coating to the environment and, thus, slow and sometimes even prevent the onset of electrochemical corrosion. Associated products, methods, and kits relating to same also are contemplated herein.
    Type: Application
    Filed: July 10, 2017
    Publication date: January 10, 2019
    Inventor: Vijayen S. VEERASAMY
  • Publication number: 20190012021
    Abstract: Certain example embodiments relate to capacitive touch panels. First and second glass substrates are substantially parallel and spaced apart from one another. At least one multi-layer transparent conductive coating (TCC) is patterned into electrodes and located between the first and second substrates. The TCC(s) include(s) at least one conductive layer including silver, a dielectric layer including zinc oxide under and directly contacting the conductive layer including silver, and a dielectric layer(s) including tin oxide or silicon nitride over the conductive layer including silver. Processing circuitry electrically connects to the electrodes and measures an aspect of the electrodes' capacitance. A laminate material is located between the first and second glass substrates. The TCC(s), when blanket deposited, may have a visible transmission of at least 88%, a sheet resistances of no more than 10 ohms per square, and a haze of no more than 0.5%. Mutual and self-capacitance designs are disclosed.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Vijayen S. VEERASAMY, Jason BLUSH, Eric W. AKKASHIAN, Willem DEN BOER, Alexey KRASNOV
  • Patent number: 10173579
    Abstract: In certain example embodiments, moisture sensors, defoggers, etc., and/or related methods, are provided. More particularly, certain example embodiments relate to moisture sensors and/or defoggers that may be used in various applications such as, for example, refrigerator/freezer merchandisers, vehicle windows, building windows, etc. When condensation or moisture is detected, an appropriate action may be taken (e.g., actuating windshield wipers, turning on a defroster, triggering the heating of a merchandiser door or window, etc.). Bayesian approaches optionally may be implemented in certain example embodiments in an attempt to improve moisture detection accuracy. For instance, models of various types of disturbances may be developed and, based on live data and a priori information known about the model, a probability of the model being accurate is calculated. If a threshold value is met, the model may be considered a match and, optionally, a corresponding appropriate action may be taken.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: January 8, 2019
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Jose Nunez-Regueiro
  • Patent number: 10167572
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: January 1, 2019
    Assignee: Guardian Glass, LLC
    Inventor: Vijayen S. Veerasamy
  • Patent number: 10164135
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). In certain example embodiments, graphene thin films grown on large areas hetero-epitaxially, e.g., on a catalyst thin film, from a hydrocarbon gas (such as, for example, C2H2, CH4, or the like). The graphene thin films of certain example embodiments may be doped or undoped. In certain example embodiments, graphene thin films, once formed, may be lifted off of their carrier substrates and transferred to receiving substrates, e.g., for inclusion in an intermediate or final product. Graphene grown, lifted, and transferred in this way may exhibit low sheet resistances (e.g., less than 150 ohms/square and lower when doped) and high transmission values (e.g., at least in the visible and infrared spectra).
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 25, 2018
    Assignee: Guardian Glass, LLC
    Inventor: Vijayen S. Veerasamy
  • Patent number: 10145005
    Abstract: Certain example embodiments relate to methods for low temperature direct graphene growth on glass, and/or associated articles/devices. In certain example embodiments, a glass substrate has a layer including Ni formed thereon. The layer including Ni has a stress pre-engineered through the implantation of He therein. It also may be preconditioned via annealing and/or the like. A remote plasma-assisted chemical vapor deposition technique is used to form graphene both above and below the Ni-inclusive film. The Ni-inclusive film and the top graphene may be removed via tape and/or the like, leaving graphene on the substrate. Optionally, a silicon-inclusive layer may be formed between the Ni-inclusive layer and the substrate. Products including such articles, and/or methods of making the same, also are contemplated.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 4, 2018
    Assignee: Guardian Glass, LLC
    Inventor: Vijayen S. Veerasamy
  • Patent number: 10125047
    Abstract: Certain example embodiments relate to an improved method of strengthening glass substrates (e.g., soda lime silica glass substrates). In certain examples, a glass substrate may be chemically strengthened by creating an electric field within the glass. In certain cases, the chemical tempering may be performed by surrounding the substrate by a plasma including certain ions, such as Li+, K+, Mg2+, and/or the like. In some cases, these ions may be forced into the glass substrate due to the half-cycles of the electric field generated by the electrodes that formed the plasma. This may advantageously chemically strengthen a glass substrate on a substantially reduced time scale. In other example embodiments, an electric field may be set in a float bath such that sodium ions are driven from the molten glass ribbon into the tin bath, which may advantageously result in a stronger glass substrate with reduced sodium content.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: November 13, 2018
    Assignee: Guardian Glass, LLC
    Inventors: Vijayen S. Veerasamy, Xuequn Hu, Glenn A. Cerny
  • Publication number: 20180319147
    Abstract: In certain example embodiments, light emitting diodes (LEDs) may be disposed on a deformable and flexible backbone sheet and chained together in an array, e.g., via flexible wiggle wires. Such flexible wiggle wires may also provide an electrical connection to an external power source. An optical out-coupling layer stack (OCLS) system may help serve as an index matching layer, heat sink, étendue conserver, etc. The backbone may be formed to a shape tailored to its ultimate application. Applications may include, for example, automotive (such as Center High Mounted Stop Lamp (CHMSL) applications), lighting, signage, and/or other applications. In an example CHMSL application, the deformable sheet with the LED array thereon has a step, sinusoidal, or other shape matched to the angle and/or curvature of the glass such that the LEDs produce light primarily in a direction parallel to a surface on which a vehicle is located.
    Type: Application
    Filed: March 28, 2018
    Publication date: November 8, 2018
    Inventor: Vijayen S. VEERASAMY