Patents by Inventor Vikrant Lal

Vikrant Lal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180331497
    Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.
    Type: Application
    Filed: January 9, 2018
    Publication date: November 15, 2018
    Inventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, JR., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
  • Publication number: 20180323877
    Abstract: Methods, systems, and apparatus, including an optical receiver including an optical source, including a substrate; a laser provided on the substrate, the laser having first and second sides and outputting first light from the first side and second light from the second side, the first light output from the first side of the laser has a first power and the second light output from the second side has a second power; and a first modulator that receives the first light and a second modulator that receives the second light, such that the power of the first light at an input of the first modulator is substantially equal to the power of the second light at an input of the second modulator.
    Type: Application
    Filed: January 4, 2017
    Publication date: November 8, 2018
    Inventors: Peter W. Evans, Jeffrey T. Rahn, Vikrant Lal, Miguel Iglesias Olmedo, Amir Hosseini, Parmijit Samra, Scott Corzine, Ryan W. Going
  • Publication number: 20180323879
    Abstract: Methods, systems, and apparatus, including an optical receiver including a laser including a gain section; and a first tunable reflector configured to output a reference signal; a first coupler formed over the substrate; a shutter variable optical attenuator formed over the substrate, the shutter variable optical attenuator including an input port configured to receive the first portion of the reference signal from the laser; and an output port configured to provide or to block, based on a control signal, the first portion of the reference signal from the laser; and a second coupler including a first port configured to receive the first portion of the reference signal from the shutter variable optical attenuator; and a second port configured to (i) provide the first portion of the reference signal from the shutter variable optical attenuator to an optical analyzer or (ii) receive a data signal from a transmitter.
    Type: Application
    Filed: January 4, 2017
    Publication date: November 8, 2018
    Inventors: Peter W. Evans, Jeffrey T. Rahn, Vikrant Lal, Miguel Iglesias Olmedo, Amir Hosseini, Parmijit Samra, Scott Corzine, Ryan W. Going
  • Patent number: 10122149
    Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: November 6, 2018
    Assignee: Infinera Corporation
    Inventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, Jr., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
  • Publication number: 20180138981
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, Donald J. Pavinski, Jie Tang, David Coult
  • Publication number: 20180131158
    Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, JR., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
  • Publication number: 20180131159
    Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, JR., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
  • Publication number: 20180131157
    Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 10, 2018
    Inventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, JR., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
  • Patent number: 9876575
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 23, 2018
    Assignee: Infinera Corporation
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, Jr., Donald J. Pavinski, Jie Tang, David Coult
  • Publication number: 20170207603
    Abstract: Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.
    Type: Application
    Filed: September 26, 2016
    Publication date: July 20, 2017
    Applicant: Infinera Corporation
    Inventors: Peter W. Evans, Fred A. Kish, JR., Vikrant Lal, Scott Corzine, Mingzhi Lu
  • Publication number: 20170201070
    Abstract: Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.
    Type: Application
    Filed: April 28, 2016
    Publication date: July 13, 2017
    Applicant: Infinera Corporation
    Inventors: Peter W. Evans, Fred A. Kish, Vikrant Lal, Scott Corzine, Mingzhi Lu
  • Publication number: 20170195062
    Abstract: Methods, systems, and apparatus, including an optical receiver including a laser including a gain section; and a first tunable reflector configured to output a reference signal; a first coupler formed over the substrate; a shutter variable optical attenuator formed over the substrate, the shutter variable optical attenuator including an input port configured to receive the first portion of the reference signal from the laser; and an output port configured to provide or to block, based on a control signal, the first portion of the reference signal from the laser; and a second coupler including a first port configured to receive the first portion of the reference signal from the shutter variable optical attenuator; and a second port configured to (i) provide the first portion of the reference signal from the shutter variable optical attenuator to an optical analyzer or (ii) receive a data signal from a transmitter.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 6, 2017
    Inventors: Peter W. Evans, Jeffrey T. Rahn, Vikrant Lal, Miguel Iglesias Olmedo, Amir Hosseini, Parmijit Samra, Scott Corzine, Ryan W. Going
  • Publication number: 20170194764
    Abstract: Methods, systems, and apparatus, including a laser including a layer having first and second regions, the first region including a void; a mirror section provided on the layer, the mirror section including a waveguide core, at least part of the waveguide core is provided over at least a portion of the void; a first grating provided on the waveguide core; a first cladding layer provided between the layer and the waveguide core and supported by the second region of the layer; a second cladding layer provided on the waveguide core; and a heat source configured to change a temperature of at least one of the waveguide core and the grating, where an optical mode propagating in the waveguide core of the mirror section does not incur substantial loss due to interaction with portions of the mirror section above and below the waveguide core.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 6, 2017
    Inventors: Peter W. Evans, Mingzhi Lu, Fred A. Kish, JR., Vikrant Lal, Scott Corzine, John W. Osenbach, Jin Yan
  • Publication number: 20170195055
    Abstract: Methods, systems, and apparatus, including an optical receiver including an optical source, including a substrate; a laser provided on the substrate, the laser having first and second sides and outputting first light from the first side and second light from the second side, the first light output from the first side of the laser has a first power and the second light output from the second side has a second power; and a first modulator that receives the first light and a second modulator that receives the second light, such that the power of the first light at an input of the first modulator is substantially equal to the power of the second light at an input of the second modulator.
    Type: Application
    Filed: January 4, 2017
    Publication date: July 6, 2017
    Inventors: Peter W. Evans, Jeffrey T. Rahn, Vikrant Lal, Miguel Iglesias Olmedo, Amir Hosseini, Parmijit Samra, Scott Corzine, Ryan W. Going
  • Publication number: 20170163001
    Abstract: Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.
    Type: Application
    Filed: August 16, 2016
    Publication date: June 8, 2017
    Applicant: Infinera Corporation
    Inventors: Peter W. Evans, Fred A. Kish, Vikrant Lal, Scott Corzine, Mingzhi Lu
  • Publication number: 20170163000
    Abstract: Consistent with the present disclosure, a compact laser with extended tunability (CLET) is provided that includes multiple segments or sections, at least one of which is curved, bent or non-collinear with other segments, so that the CLET has a compact form factor either as a singular laser or when integrated with other devices. The term CLET, as used herein, refers to any of the laser configurations disclosed herein having mirrors and a bent, angled or curved part, portion or section between such mirrors. If bent, the bent portion is preferably oriented at an angle of at least 30 degrees relative to other portions of the CLET. Alternatively, the curve or bend portion may be distributed over different sections of the CLET over a series of arcs, for example. The waveguide extending between the mirrors is continuous, such that light propagating along the waveguide is not divided or split. The waveguide also constitutes a continuous waveguide path.
    Type: Application
    Filed: August 16, 2016
    Publication date: June 8, 2017
    Applicant: Infinera Corporation
    Inventors: Peter W. Evans, Fred A. Kish, Vikrant Lal, Scott Corzine, Mingzhi Lu
  • Patent number: 9312962
    Abstract: An optical modulator includes a splitter, phase modulators, amplitude modulators, intensity modulators, and a combiner. The splitter is configured to receive light, and split the light into portions of the light. Each of the phase modulators is configured to receive a corresponding one of the portions of the light, and modulate a phase of the portion of the light to provide a phase-modulated signal. Each of the amplitude modulators is configured to receive a corresponding one of the phase-modulated signals, and modulate an amplitude of the phase-modulated signal to provide an amplitude-modulated signal. Each of the intensity modulators is configured to receive a corresponding one of the amplitude-modulated signals, and modulate an intensity of the amplitude-modulated signals to provide an intensity-modulated signal. The combiner is configured to receive the intensity-modulated signals, combine the intensity-modulated signals into a combined signal, and output the combined signal.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: April 12, 2016
    Assignee: Infinera Corporation
    Inventors: David J. Krause, Damien Lambert, Masaki Kato, Vikrant Lal, Radhakrishnan L. Nagarajan, Mehrdad Ziari, Fred A. Kish, Jr., John D. McNicol, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20150318952
    Abstract: A device may include a substrate. The device may include a carrier mounted to the substrate. The device may include a transmitter photonic integrated circuit (PIC) mounted on the carrier. The transmitter PIC may include a plurality of lasers that generate an optical signal when a voltage or current is applied to one of the plurality of lasers. The device may include a first microelectromechanical structure (MEMS) mounted to the substrate. The first MEMS may include a first set of lenses. The device may include a planar lightwave circuit (PLC) mounted to the substrate. The PLC may be optically coupled to the plurality of lasers by the first set of lenses of the first MEMS. The device may include a second MEMS, mounted to the substrate, that may include a second set of lenses, which may be configured to optically couple the PLC to an optical fiber.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 5, 2015
    Inventors: Timothy Butrie, Michael Reffle, Xiaofeng Han, Mehrdad Ziari, Vikrant Lal, Peter W. Evans, Fred A. Kish, JR., Donald J. Pavinski, Jie Tang, David Coult
  • Patent number: 8958665
    Abstract: An optical device may include a substrate; an arrayed waveguide grating provided on the substrate and having first and second slabs; multiple first waveguides extending from the first slab, the multiple first waveguides may supply respective first optical signals to the first slab; multiple second waveguides extending from the second slab, the multiple second waveguides may supply respective second optical signals to the second slab; a third waveguide extending from the second slab, the third waveguide outputting a third optical signal from the second slab, the third optical signal including the first optical signals; a fourth waveguide extending from the first slab, the fourth waveguide may output a fourth optical signal from the first slab, the fourth optical signal including the second optical signals; and a first scattering device optically coupled to a portion of an edge of the first slab between the multiple first waveguides and the fourth waveguide.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: February 17, 2015
    Assignee: Infinera Corporation
    Inventors: Peter W. Evans, Pavel Studenkov, Mehrdad Ziari, Matthias Kuntz, Scott Corzine, Masaki Kato, Vikrant Lal
  • Patent number: 8494314
    Abstract: The present invention provides a polarization converter, and a method for fabricating the same. The polarization converter includes a geometric shape which induces rotation of a polarization of an optical signal from a first polarization state to a second polarization state as the optical signal propagates along the polarization converter. The performance of the polarization converter is maintained in light of inconsistencies in fabrication processes resulting in improved manufacturability.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: July 23, 2013
    Assignee: Infinera Corporation
    Inventors: Pavel V. Studenkov, Vikrant Lal, Scott Corzine