Patents by Inventor Vinod Sharma

Vinod Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200295986
    Abstract: In non-limiting examples of the present disclosure, systems, methods and devices for monitoring telemetry data from a cloud-based application service are presented. Telemetry data for a plurality of operations for the cloud-based application service may be analyzed, wherein the analysis comprises comparing a first time series with a second time series, and where data from the second time series relates to operations that were executed prior in time compared with execution of operations related to the first time series. One or more operational changes in the cloud-based application service may be identified based on the analysis, and at least one telemetry monitor may be dynamically configured based on the one or more operational changes that were identified.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 17, 2020
    Inventors: Mangalam Rathinasabapathy, Rahul Nigam, Vinod Menon, Esha Sharma, Mark Raymond Gilbert
  • Patent number: 10750970
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 25, 2020
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Xusheng Zhang, Vinod Sharma, James D. Reinke, Barbara J. Schmid
  • Patent number: 10736516
    Abstract: An implantable monitoring device is disclosed for monitoring a patient's heart rate variability over time. The device includes a cardiac electrogram amplifier, a sensing electrode coupled to an input of the amplifier, timing circuitry, processing circuitry and a memory. The timing circuitry defines successive shorter time periods during each monitoring period. The processing circuitry relies upon electrogram activity that occurs during rest periods that extend as long as T1, all of which is stored into memory. Active periods are not considered as part of the heart rate variability calculation. The processing circuitry calculates median intervals between depolarizations of the patient's heart sensed by the amplifier during the shorter time periods and calculates a standard deviation of the median intervals during T2, a longer monitoring period.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: August 11, 2020
    Assignee: Medtronic, Inc.
    Inventor: Vinod Sharma
  • Patent number: 10702213
    Abstract: A method and device for differentiating heart failure risk scores that includes determining receipt of a current data transmission and acquiring patient metrics from a remote monitoring device, determining a daily heart failure risk score for each day occurring during a time period from a previous received data transmission to the current received data transmission based on the acquired patient metrics, and determining a maximum daily heart failure risk score of the determined daily heart failure risk scores during a lookback window prior to the current received data transmission. A heart failure risk score is determined for the received data transmission based on the determined maximum daily heart failure risk score, and a heart failure risk score alert is determined for the received data transmission based on the proximity of the determined maximum heart failure risk score and the current received data transmission.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 7, 2020
    Assignee: Medtronics, Inc.
    Inventors: Vinod Sharma, Joel R. Lauer, Holly S. Norman
  • Publication number: 20200196948
    Abstract: Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 25, 2020
    Inventors: Yong K. Cho, Tom D. Bennett, Douglas A. Hettrick, Charles P. Sperling, Paul A. Sobotka, Vinod Sharma, Eduardo N. Warman, Todd M. Zielinski
  • Publication number: 20200202216
    Abstract: A quaternion deep neural network (QTDNN) includes a plurality of modular hidden layers, each comprising a set of QT computation sublayers, including a quaternion (QT) general matrix multiplication sublayer, a QT non-linear activations sublayer, and a QT sampling sublayer arranged along a forward signal propagation path. Each QT computation sublayer of the set has a plurality of QT computation engines. In each modular hidden layer, a steering sublayer precedes each of the QT computation sublayers along the forward signal propagation path. The steering sublayer directs a forward-propagating quaternion-valued signal to a selected at least one QT computation engine of a next QT computation subsequent sublayer.
    Type: Application
    Filed: May 31, 2018
    Publication date: June 25, 2020
    Inventors: Monica Lucia Martinez-Canales, Sudhir K. Singh, Vinod Sharma, Malini Krishnan Bhandaru
  • Publication number: 20200187865
    Abstract: Provided is a method, system and/or apparatus for determining prospective heart failure event risk. Acquired from a device memory are a heart failure patient's current and preceding risk assessment periods. Counting detected data observations in the current risk assessment period for a current risk assessment total amount and counting detected data observations in the preceding risk assessment period for a preceding risk assessment period total amount. Associating the current risk assessment and preceding risk assessment total amounts with a lookup table to acquire prospective risk of heart failure (HF) event for the preceding risk assessment period and the current risk assessment period. Employing weighted sums of the prospective risk of the HF event for the preceding risk assessment period and the current risk assessment period to calculate a weighted prospective risk of the HF event for a patient. Displaying on a graphical user interface the weighted prospective risk of the HF event for the patient.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 18, 2020
    Inventors: Vinod Sharma, Eduardo N. Warman, Yong K. Cho, Shantanu Sarkar
  • Publication number: 20200193235
    Abstract: A deep neural network (DNN) includes hidden layers arranged along a forward propagation path between an input layer and an output layer. The input layer accepts training data comprising quaternion values, outputs a quaternion-valued signal along the forward path to at least one of the hidden layers. At least some of the hidden layers include quaternion layers to execute consistent quaternion (QT) forward operations based on one or more variable parameters. A loss function engine produces a loss function representing an error between the DNN result and an expected result. QT backpropagation-based training operations include computing layer-wise QT partial derivatives, consistent with an orthogonal basis of quaternion space, of the loss function with respect to a QT conjugate of the one or more variable parameters and of respective inputs to the quaternion layers.
    Type: Application
    Filed: May 31, 2018
    Publication date: June 18, 2020
    Inventors: Monica Lucia Martinez-Canales, Sudhir K. Singh, Vinod Sharma, Malini Krishnan Bhandaru
  • Publication number: 20200187864
    Abstract: In some examples, a system comprises one or more medical devices configured to, for each of a plurality of periods, determine a respective value for each of a plurality of parameters of a patient and processing circuitry. The processing circuitry can for each of the plurality of periods, execute an algorithm to determine at least one of a heart failure risk score or status for the patient based on the determined values for the period, determine a number of the determined heart failure risk scores or statuses that were false determinations, determine that the number of false determinations for the patient satisfies a false determination threshold, and modify the algorithm for the patient in response to the determination that the number of false determinations for the patient satisfies the false determination threshold.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Inventor: Vinod Sharma
  • Publication number: 20200117993
    Abstract: A machine-learning system includes a quaternion (QT) computation engine. Input data to the QT computation engine includes quaternion values, each comprising a real component and three imaginary components, represented as a set of real-valued tensors. A single quaternion value is represented as a 1-dimensional real-valued tensor having four real-valued components, wherein a first real-valued component represents the real component of the single quaternion value, and wherein a second, a third, and a fourth real-valued component each respectively represents one of the imaginary components. A quaternion-valued vector having a size N is represented as a 2-dimensional real-valued tensor comprising N 1-dimensional real-valued tensors. A quaternion-valued matrix having N×M dimensions is represented as a 3-dimensional real-valued tensor comprising M 2-dimensional real-valued tensors comprising N 1-dimensional real-valued tensors.
    Type: Application
    Filed: May 31, 2018
    Publication date: April 16, 2020
    Inventors: Monica Lucia Martinez-Canales, Sudhir K. Singh, Vinod Sharma, Malini Krishnan Bhandaru
  • Patent number: 10558897
    Abstract: Various systems and methods for implementing context-based digital signal processing are described herein. An object detection system includes a processor to: access sensor data from a first sensor and a second sensor integrated in a vehicle; access an operating context of the vehicle; assign a first weight to a first object detection result from sensor data of the first sensor, the first weight adjusted based on the operating context; assign a second weight to a second object detection result from sensor data of the second sensor, the second weight adjusted based on the operating context; and perform a combined object detection technique by combining the first object detection result weighted by the first weight and the second object detection result weighted by the second weight.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Vinod Sharma, Monica Lucia Martinez-Canales, Peggy Jo Irelan, Malini Krishnan Bhandaru, Rita Chattopadhyay, Soila Pertet Kavulya
  • Patent number: 10517542
    Abstract: Provided is a method, system and/or apparatus for determining prospective heart failure event risk. Acquired from a device memory are a heart failure patient's current and preceding risk assessment periods. Counting detected data observations in the current risk assessment period for a current risk assessment total amount and counting detected data observations in the preceding risk assessment period for a preceding risk assessment period total amount. Associating the current risk assessment and preceding risk assessment total amounts with a lookup table to acquire prospective risk of heart failure (HF) event for the preceding risk assessment period and the current risk assessment period. Employing weighted sums of the prospective risk of the HF event for the preceding risk assessment period and the current risk assessment period to calculate a weighted prospective risk of the HF event for a patient. Displaying on a graphical user interface the weighted prospective risk of the HF event for the patient.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 31, 2019
    Assignee: Medtronic, Inc.
    Inventors: Vinod Sharma, Eduardo N Warman, Yong K Cho, Shantanu Sarkar
  • Publication number: 20190381322
    Abstract: A method and device apparatus to deliver a pacing therapy capable of remodeling a patient's heart over a period of time that includes monitoring one or more parameters in response to a delivered cardiac remodeling pacing, determining whether the cardiac remodeling pacing has an effect on cardiac normalization in response to the monitoring, and adjusting the cardiac remodeling pacing in response to the determined effect on cardiac normalization. The method and device may also perform short-term monitoring of one or more parameters in response to the delivered cardiac remodeling pacing, monitor one or more long-term parameter indicative of a long-term effect of the delivered cardiac remodeling pacing, determine the long-term effect of the delivered cardiac remodeling pacing on cardiac normalization in response to the monitoring, and adjust the cardiac remodeling pacing in response to one or both of the short-term monitoring and the determined long-term effect on cardiac normalization.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 19, 2019
    Inventors: Vinod Sharma, Teresa A. Whitman, Troy E. Jackson
  • Publication number: 20190381323
    Abstract: A method and device apparatus to deliver a pacing therapy capable of remodeling a patient's heart over a period of time that includes delivering remodeling pacing during a first interval, the first interval comprising a first rate and a first duration, determining whether to adjust one or both of the first rate and the first duration during delivery of remodeling pacing during a next interval subsequent to the first interval, and delivering remodeling pacing during the next interval in response to the determining, wherein the next interval comprises one of the first rate and the first duration of the first interval and the adjusted one or both of the first rate and the first duration.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 19, 2019
    Inventors: Vinod Sharma, Teresa A. Whitman, Troy Jackson
  • Patent number: 10510154
    Abstract: Machine vision processing includes capturing 3D spatial data representing a field of view and including ranging measurements to various points within the field of view, applying a segmentation algorithm to the 3D spatial data to produce a segmentation assessment indicating a presence of individual objects within the field of view, wherein the segmentation algorithm is based on at least one adjustable parameter, and adjusting a value of the at least one adjustable parameter based on the ranging measurements. The segmentation assessment is based on application of the segmentation algorithm to the 3D spatial data, with different values of the at least one adjustable parameter value corresponding to different values of the ranging measurements of the various points within the field of view.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: December 17, 2019
    Assignee: Intel Corporation
    Inventors: Rita Chattopadhyay, Monica Lucia Martinez-Canales, Vinod Sharma
  • Publication number: 20190350488
    Abstract: A health care system acquires data determines whether a patient is at risk of hypervolemia or hypovolemia. The method comprises (a) acquiring from a device memory a patient's absolute intrathoracic impedance data over a pre-specified time period, (b) determining a running average of the intrathoracic impedance data over the pre-specified time period, and (c) determining by the system whether the running average of the intrathoracic impedance data over the pre-specified time period exceeds one of a first and second range, the first range being a higher value boundary of intrathoracic electrical impedance and the second range being a lower value boundary of intrathoracic electrical impedance.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 21, 2019
    Inventors: Vinod Sharma, Jodi L. REDEMSKE
  • Publication number: 20190340291
    Abstract: Databases are often provided according to various organizational models (e.g., document-oriented storage, key/value stores, and relational database), and are accessed through various access models (e.g., SQL, XPath, and schemaless queries). As data is shared across sources and applications, the dependency of a data service upon a particular organizational and/or access models may become confining. Instead, data services may store data in a base representation format, such as an atom-record-sequence model. New data received in a native item format may be converted into the base representation format for storage, and converted into a requested format to fulfill data requests. Queries may be translated from a native query format into a base query format that is applicable to the base representation format of the data set, e.g., via translation into an query intermediate language (such as JavaScript) and compilation into opcodes that are executed by a virtual machine within the database engine.
    Type: Application
    Filed: May 29, 2018
    Publication date: November 7, 2019
    Inventors: Karthik RAMAN, Momin Mahmoud AL-GHOSIEN, Samer BOSHRA, Brandon CHONG, Madhan GAJENDRAN, Mikhail Mikhailovich KOLTACHEV, Orestis KOSTAKIS, Aravind Ramachandran KRISHNA, Liang LI, Jayanta MONDAL, Balachandar PERUMALSWAMY, Karan Vishwanath POPALI, Adrian Ilcu PREDESCU, Vivek RAVINDRAN, Ankur Savailal SHAH, Pankaj SHARMA, Dharma SHUKLA, Ashwini SINGH, Vinod SRIDHARAN, Hari Sudan SUNDAR, Krishnan SUNDARAM, Shireesh Kumar THOTA, Oliver Drew Leonard TOWERS, Siddhesh Dilip VETHE
  • Publication number: 20190336076
    Abstract: In some examples, determining a heart failure status includes using an implantable medical device configured for subcutaneous implantation and comprising a plurality of electrodes and an optical sensor. Processing circuitry of a system comprising the device may determine, for a patient, a current tissue oxygen saturation value based on a signal received from the at least one optical sensor, a current tissue impedance value based on a subcutaneous tissue impedance signal received from the electrodes, and a current pulse transit time value based on a cardiac electrogram signal received from the electrodes and at least one of the signal received from the optical sensor and the subcutaneous tissue impedance signal. The processing circuitry may further compare the current tissue oxygen saturation value, current tissue impedance value, and current pulse transit time value to corresponding baseline values, and determine the heart failure status of the patient based on the comparison.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 7, 2019
    Inventors: Jonathan L. Kuhn, James K. Carney, Vinod Sharma, Shantanu Sarkar, Todd M. Zielinski, Tommy D. Bennett
  • Publication number: 20190329043
    Abstract: Methods and systems for seamless adjustment of treatment are disclosed. A determination can be made as to whether to intervene with a patient's treatment based on data obtained from implantable electrodes and/or non-implantable electrodes. The data from non-implantable electrodes have a correction factor applied to adjust for less accuracy compared to data acquired from implantable electrodes.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 31, 2019
    Inventor: Vinod Sharma
  • Patent number: 10448855
    Abstract: In situations in which an implantable medical device (IMD) (e.g., an extravascular ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the IMD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the IMD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the IMD includes a pace pulse detector that detects, based on the processing of sensed electrical signals, delivery of a pacing pulse from a second implantable medical device and blank, based on the detection of the pacing pulse, the sensed electrical signal to remove the pacing pulse from the sensed electrical signal.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 22, 2019
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi