Patents by Inventor Vipul Jain

Vipul Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11296426
    Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: April 5, 2022
    Assignee: Anokiwave, Inc.
    Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
  • Publication number: 20220013922
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Application
    Filed: September 23, 2021
    Publication date: January 13, 2022
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Patent number: 11205846
    Abstract: A phased antenna array system is provided that includes a beamforming integrated circuit and beamforming elements in communication with the integrated circuit disposed on a substrate. The beamforming integrated circuit includes multiple radio frequency (RF) signal ports. One or more of the RF signal ports includes an RF signal pad disposed between an edge of the integrated circuit and an internal RF ground pad. The RF signal pad and the internal RF ground pad of the RF signal port are oriented perpendicular with respect to the edge of the integrated circuit. Specifically, the RF signal pad has a first side disposed on or adjacent to the edge of the integrated circuit and an opposing second side that is adjacent to the internal RF ground pad. A method of controlling the phased antenna array system is also provided.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: December 21, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Kevin Greene, Amr Ibrahim, Vipul Jain
  • Publication number: 20210344099
    Abstract: A conditioning integrated circuit (CDIC) chip can be used to aggregate signals to/from a number of beam forming integrated circuit (BFIC) chips, and signals to/from a number of CDIC chips can be aggregated by an interface integrated circuit (IFIC) chip. The CDIC chip includes temperature compensation circuitry to adjust the gain of the transmit and receive signals as a function of temperature based on inputs from a temperature sensor. The CDIC may include a plurality of beam forming channels each having a transmit circuit and a receive circuit, a common port coupled to the beam forming channels for selectively providing a common transmit signal to the beam forming channels and receiving a common receive signal from the beam forming channels, and a temperature compensation circuit configured to provide variable attenuation to the common transmit signal and the common receive signal based on a temperature sense signal.
    Type: Application
    Filed: July 7, 2021
    Publication date: November 4, 2021
    Inventors: Kristian N. Madsen, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain, Jonathan P. Comeau, Shmuel Ravid
  • Publication number: 20210328345
    Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.
    Type: Application
    Filed: June 30, 2021
    Publication date: October 21, 2021
    Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon
  • Publication number: 20210320427
    Abstract: A phased array includes a laminar substrate having both 1) a plurality of elements forming a patch phased array, and 2) a plurality of integrated circuits. Each integrated circuit is configured to control receipt and transmission of signals by the plurality of elements in the patch phased array. The integrated circuits also are configured to operate the phased array at one or more satellite frequencies—to transmit signals to and/or receive signals from a satellite. Each integrated circuit physically couples with one corresponding element so that incoming signals are received by the corresponding element in a first polarization, and outgoing signals are transmitted by the corresponding element in a second polarization. The phased array isolates the transmit signals from the receive signals by orienting the first and second polarizations differently.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 14, 2021
    Inventors: David W. Corman, Vipul Jain, Timothy Carey, Nitin Jain
  • Patent number: 11133603
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: September 28, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Publication number: 20210296784
    Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.
    Type: Application
    Filed: April 9, 2021
    Publication date: September 23, 2021
    Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
  • Patent number: 11081792
    Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 3, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon
  • Publication number: 20210235282
    Abstract: A beamforming integrated circuit system is configured to optimize performance. Among other things, the system may run at a lower power than conventional integrated circuits, selectively disable branches to control certain system functions, and/or selectively position ground pads around receiving pads to enhance isolation. The system also may use a beamforming integrated circuit as a distribution circuit for a number of similar or like beamforming integrated circuits.
    Type: Application
    Filed: December 24, 2018
    Publication date: July 29, 2021
    Applicant: ANOKIWAVE, INC.
    Inventors: Pavel Brechko, David W. Corman, Vipul Jain, Shamsun Nahar, Jason Durbin, Nitin Jain
  • Patent number: 11063336
    Abstract: A conditioning integrated circuit (CDIC) chip can be used to aggregate signals to/from a number of beam forming integrated circuit (BFIC) chips, and signals to/from a number of CDIC chips can be aggregated by an interface integrated circuit (IFIC) chip. The CDIC chip includes temperature compensation circuitry to adjust the gain of the transmit and receive signals as a function of temperature based on inputs from a temperature sensor. The CDIC may include a plurality of beam forming channels each having a transmit circuit and a receive circuit, a common port coupled to the beam forming channels for selectively providing a common transmit signal to the beam forming channels and receiving a common receive signal from the beam forming channels, and a temperature compensation circuit configured to provide variable attenuation to the common transmit signal and the common receive signal based on a temperature sense signal.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain, Jonathan P. Comeau, Shmuel Ravid
  • Publication number: 20210151876
    Abstract: A beamforming IC operates in a transmit mode or a receive mode to respectively transmit and receive signals at different times. To that end, the beamforming IC has an element interface, a transmit branch configured to produce an output transmit signal through the element interface when in the transmit mode, and a receive branch configured to receive an input signal through the element interface when in the receive mode. The beamforming circuit also has a sampling circuit with an electrical coupling with the transmit branch. The sampling circuit is configured to sample the output transmit signal with the electrical coupling to produce a sample signal. The sampling circuit also is configured to direct the sample signal through the receive branch, which is configured to modify the phase of the sample signal to produce a modified sample signal. This modified sample signal can be used to manage the IC transmission.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 20, 2021
    Inventors: Saeed Farsi, Vipul Jain, Zarion Jacobs, Jonathan P. Comeau, Shmuel Ravid, Hakan Coskun
  • Patent number: 11011853
    Abstract: A phased array includes a laminar substrate having both 1) a plurality of elements forming a patch phased array, and 2) a plurality of integrated circuits. Each integrated circuit is configured to control receipt and transmission of signals by the plurality of elements in the patch phased array. The integrated circuits also are configured to operate the phased array at one or more satellite frequencies—to transmit signals to and/or receive signals from a satellite. Each integrated circuit physically couples with one corresponding element so that incoming signals are received by the corresponding element in a first polarization, and outgoing signals are transmitted by the corresponding element in a second polarization. The phased array isolates the transmit signals from the receive signals by orienting the first and second polarizations differently.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: May 18, 2021
    Assignee: Anokiwave, Inc.
    Inventors: David W. Corman, Vipul Jain, Timothy Carey, Nitin Jain
  • Patent number: 10998640
    Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 4, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
  • Publication number: 20210075125
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Publication number: 20210044017
    Abstract: A phased antenna array system is provided that includes a beamforming integrated circuit and beamforming elements in communication with the integrated circuit disposed on a substrate. The beamforming integrated circuit includes multiple radio frequency (RF) signal ports. One or more of the RF signal ports includes an RF signal pad disposed between an edge of the integrated circuit and an internal RF ground pad. The RF signal pad and the internal RF ground pad of the RF signal port are oriented perpendicular with respect to the edge of the integrated circuit. Specifically, the RF signal pad has a first side disposed on or adjacent to the edge of the integrated circuit and an opposing second side that is adjacent to the internal RF ground pad. A method of controlling the phased antenna array system is also provided.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 11, 2021
    Inventors: Kevin Greene, Amr Ibrahim, Vipul Jain
  • Patent number: 10862222
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be preprogrammed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 8, 2020
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. Mcmorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Patent number: 10853461
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for decoding Turing tests. One of the methods includes managing a database that stores data of each of a plurality of aggregation accounts; sending, for a particular account identified by one of the aggregation accounts and to a server, a request for access to account data for the particular account; receiving, from the server, data that includes a login credentials field and a Turing test challenge; extracting the Turing test challenge; providing, to an external system that is a different system from the server, the Turing test challenge; receiving, from the external system, a response to the Turing test challenge; providing, to the server, the response to the Turing test challenge; providing, to the server, the login credentials for the particular account; and receiving, from the server, account data for the particular account.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: December 1, 2020
    Assignee: Yodlee, Inc.
    Inventors: Vipul Jain, Ritu Bhandari, Apoorv Awasthi
  • Patent number: 10855383
    Abstract: A system and a method for calibrating an antenna using trim bits and non-volatile memory is disclosed. In one aspect, an apparatus includes a power amplifier configured to at least amplify the output signal of the first antenna. The power amplifier includes multiple stages. The apparatus further includes a trim control circuit configured to adjust a bias of one of the stages of the power amplifier, using trim bits from non-volatile memory. The trim control circuit is further configured to scale the bias of one of the plurality of stages of the power amplifier by an integer between 0 and 2n?1 corresponding to a binary number formed by the first plurality of trim bits, wherein n corresponds to the number of trim bits.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 1, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Robert McMorrow, Vipul Jain, Mikhail Shirokov, Kevin B. Greene, Susanne A. Paul, Shamsun Nahar
  • Publication number: 20200350677
    Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.
    Type: Application
    Filed: March 7, 2019
    Publication date: November 5, 2020
    Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon