Patents by Inventor Vitali Lissianski

Vitali Lissianski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9074152
    Abstract: A plasma-assisted waste gasification system and process for converting waste stream reaction residues into a clean synthesis gas (syngas) is disclosed. The feedstock is fed into a reactor roughly one-third from the bottom through the use of a feed mechanism. The reactor has three zones; a bottom zone where melting occurs, a middle zone where gasification takes place, and a top zone with integrated plasma torches to control the temperature and polish the syngas. The residence times in the three zones are selected to optimize the syngas composition and melted products. The syngas leaves the reactor and is partially quenched with relatively cooler synthesis gas. The partially quenched syngas is further cooled to recover heat for steam generation and/or preheating the waste stream to the reactor. The cold syngas is then processed to remove pollutants. The clean synthesis gas is combusted in power generation equipment to generate electricity, or converted to other fuels by chemical processes.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: July 7, 2015
    Assignee: General Electric Company
    Inventors: Matthew Christian Nielsen, Richard Anthony DePuy, Aditya Kumar, James Patrick Francis Lyons, Vitali Lissianski, Ruijie Shi, Surinder Prabhjot Singh, Kenneth Brakeley Welles, Vladimir Zamansky
  • Patent number: 8617271
    Abstract: A coal gasifier is retrofitted to achieve multiple advantages such as reduced oxygen consumption, reduced CO2 and NOx emissions, better H:C ratio, better carbon conversion etc. This is achieved by dividing the coal into at least two zones and modifying the gasifier and operating it as described. The coal is injected into a first zone, configured to devolatilize a substantial portion of the injected coal to produce coal char and volatiles. The operation is tuned to substantially consume the oxidant injected in the first zone. A low-calorific-value, high oxidant feedstock is injected in second zone of the gasifier. The devolatilization of the low-calorific-value, high oxidant content feedstock provides the oxygen containing compounds which gasify at least a portion of the coal char generated in the first zone.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 31, 2013
    Assignee: General Electric Company
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Nikolaevich Eiteneer, Wei Wei, Ravichandra Srinivasa Jupudi, Ramanathan Subramanian
  • Patent number: 8574329
    Abstract: A method of operating a gasifier is provided that envisions dividing the gasifier into multiple zones. A high-calorific-value feedstock with an oxidant is injected in the first zone. The gasifier is operated to substantially consume the oxidant within the first gasification zone. The method of operating the gasifier further includes injecting a low-calorific-value, high-oxygen-content feedstock in a second gasification zone. The low-calorific-value, high-oxygen-content feedstock is devolatilized and gasified in second zone. A method of operation provides for a synergistic co-gasification of the high-calorific-value feedstock and the low-calorific-value, high oxidant content feedstock. The method provides for specific control actions that enable operation of multi-fuel, multizone gasifier.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: November 5, 2013
    Assignee: General Electric Company
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Nikolaevich Eiteneer, Wei Wei, Ravichandra Srinivasa Jupudi, Ramanathan Subramanian
  • Patent number: 7837962
    Abstract: A method of reducing particulate matter and mercury emissions in a combustion flue gas includes, in an exemplary embodiment, combusting a fuel resulting in generation a flue gas flow, cooling the flue gas flow within a duct, positioning a flow conditioning apparatus within the duct, enhancing a reaction rate of the mercury and carbon-containing fly ash particles by directing the flue gas flow through the flow conditioning apparatus to mix the carbon-containing fly ash particles and mercury within the flue gas flow and to facilitate at least one of oxidation of the mercury and binding the mercury to the carbon-containing fly ash particles, collecting a portion of the carbon-containing fly ash particles in the flow conditioning apparatus, and directing the flue gas flow to a particulate collection device to remove the remaining portion of the fly ash particles from flue gas flow.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: November 23, 2010
    Assignee: General Electric Company
    Inventors: Boris Nikolaevich Eiteneer, Robert Warren Taylor, Vitali Lissianski, James Easel Roberts
  • Patent number: 7833315
    Abstract: Method and a system for capturing mercury in a flue gas are provided. The method includes partially oxidizing a carbonaceous solid fuel in a gasifier such that a thermally activated carbon-containing solid sorbent and gaseous gasification products are generated wherein the gasifier is proximate to a combustion system for combusting a mercury containing fuel. The method further includes storing the generated thermally activated carbon-containing solid sorbent proximate to the combustion system and combusting a mercury containing fuel in a combustion zone of the combustion system wherein mercury released during combustion is entrained in flue gas generated by the combustion. The method also includes injecting the thermally activated solid sorbent in the flue gas downstream of the combustion zone and absorbing at least a portion of the entrained mercury on the thermally activated solid sorbent.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Vitali Lissianski, Peter Martin Maly, William Randall Seeker, Christopher Aaron Samuelson
  • Publication number: 20100146858
    Abstract: A coal gasifier is retrofitted to achieve multiple advantages such as reduced oxygen consumption, reduced CO2 and NOx emissions, better H:C ratio, better carbon conversion etc. This is achieved by dividing the coal into at least two zones and modifying the gasifier and operating it as described. The coal is injected into a first zone, configured to devolatilize a substantial portion of the injected coal to produce coal char and volatiles. The operation is tuned to substantially consume the oxidant injected in the first zone. A low-calorific-value, high oxidant feedstock is injected in second zone of the gasifier. The devolatilization of the low-calorific-value, high oxidant content feedstock provides the oxygen containing compounds which gasify at least a portion of the coal char generated in the first zone.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 17, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Nikolaevich Eiteneer, Wei Wei, Ravichandra Srinivasa Jupudi, Ramanathan Subramanian
  • Publication number: 20100146857
    Abstract: A method of operating a gasifier is provided that envisions dividing the gasifier into multiple zones. A high-calorific-value feedstock with an oxidant is injected in the first zone. The gasifier is operated to substantially consume the oxidant within the first gasification zone. The method of operating the gasifier further includes injecting a low-calorific-value, high-oxygen-content feedstock in a second gasification zone. The low-calorific-value, high-oxygen-content feedstock is devolatilized and gasified in second zone. A method of operation provides for a synergistic co-gasification of the high-calorific-value feedstock and the low-calorific-value, high oxidant content feedstock. The method provides for specific control actions that enable operation of multi-fuel, multizone gasifier.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 17, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Nikolaevich Eiteneer, Wei Wei, Ravichandra Srinivasa Jupudi, Ramanathan Subramanian
  • Publication number: 20100146856
    Abstract: A gasifier is provided gasify multiple fuels. The gasifier is configured to include a first gasification zone for gasifying a high-calorific-value feedstock with an oxidant. The gasifier is configured to substantially consume the oxidant within the first gasification zone. The gasifier further includes a second gasification zone for gasifying a low-calorific-value, high-oxygen-content feedstock. The high-calorific-value fuel may be coal and the low-calorific-value fuel may be biomass.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 17, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Nikolaevich Eiteneer, Wei Wei, Ravichandra Srinivasa Jupudi, Ramanathan Subramanian
  • Publication number: 20090235848
    Abstract: A method of reducing particulate matter and mercury emissions in a combustion flue gas includes, in an exemplary embodiment, combusting a fuel resulting in generation a flue gas flow, cooling the flue gas flow within a duct, positioning a flow conditioning apparatus within the duct, enhancing a reaction rate of the mercury and carbon-containing fly ash particles by directing the flue gas flow through the flow conditioning apparatus to mix the carbon-containing fly ash particles and mercury within the flue gas flow and to facilitate at least one of oxidation of the mercury and binding the mercury to the carbon-containing fly ash particles, collecting a portion of the carbon-containing fly ash particles in the flow conditioning apparatus, and directing the flue gas flow to a particulate collection device to remove the remaining portion of the fly ash particles from flue gas flow.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Inventors: Boris Nikolaevich Eiteneer, Robert Warren Taylor, Vitali Lissianski, James Easel Roberts
  • Publication number: 20090211444
    Abstract: Method and a system for capturing mercury in a flue gas are provided. The method includes partially oxidizing a carbonaceous solid fuel in a gasifier such that a thermally activated carbon-containing solid sorbent and gaseous gasification products are generated wherein the gasifier is proximate to a combustion system for combusting a mercury containing fuel. The method further includes storing the generated thermally activated carbon-containing solid sorbent proximate to the combustion system and combusting a mercury containing fuel in a combustion zone of the combustion system wherein mercury released during combustion is entrained in flue gas generated by the combustion. The method also includes injecting the thermally activated solid sorbent in the flue gas downstream of the combustion zone and absorbing at least a portion of the entrained mercury on the thermally activated solid sorbent.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 27, 2009
    Inventors: Vitali Lissianski, Peter Martin Maly, William Randall Seeker, Christopher Aaron Samuelson
  • Publication number: 20090064581
    Abstract: A plasma-assisted waste gasification system and process for converting waste stream reaction residues into a clean synthesis gas (syngas) is disclosed. The feedstock is fed into a reactor roughly one-third from the bottom through the use of a feed mechanism. The reactor has three zones; a bottom zone where melting occurs, a middle zone where gasification takes place, and a top zone with integrated plasma torches to control the temperature and polish the syngas. The residence times in the three zones are selected to optimize the syngas composition and melted products. The syngas leaves the reactor and is partially quenched with relatively cooler synthesis gas. The partially quenched syngas is further cooled to recover heat for steam generation and/or preheating the waste stream to the reactor. The cold syngas is then processed to remove pollutants. The clean synthesis gas is combusted in power generation equipment to generate electricity, or converted to other fuels by chemical processes.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Christian Nielsen, Richard Anthony DePuy, Aditya Kumar, James Patrick Francis Lyons, Vitali Lissianski, Ruijie Shi, Surinder Prabhjot Singh, Kenneth Brakeley Welles, Vladimir Zamansky
  • Patent number: 7452517
    Abstract: Method for reducing mercury emissions from coal-fired combustion comprising staging of a combustion unit to remove mercury with fly ash from the flue gas, introducing activated carbon to remove mercury from the flue gas, and collecting the fly ash, activated carbon, and associated mercury in a particulate control device.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: November 18, 2008
    Assignee: General Electric Company
    Inventors: Vitali Lissianski, Randy Seeker, Peter M. Maly
  • Publication number: 20080127631
    Abstract: Disclosed herein is a catalyst composition comprising a halide of a Group Ib element and an inert powder. Disclosed herein too is a composition comprising a reaction product of a halide of a Group Ib element, an inert powder and mercury. Disclosed herein too is a method comprising injecting a catalyst composition comprising a halide of a Group Ib element and an inert powder into an emissions stream of a thermoelectric power plant; converting an elemental form of mercury present in the emissions stream into an oxidized form, an amalgamated form and/or a particulate bound form of mercury; and collecting the oxidized form, the amalgamated form and/or the particulate bound form of mercury prior to the entry of the emissions stream into the atmosphere.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Applicant: General Electric Company
    Inventors: Deborah Ann Haitko, Vitali Lissianski, Alison Liana Palmatier
  • Publication number: 20070128096
    Abstract: Method for reducing mercury emissions from coal-fired combustion comprising staging of a combustion unit to remove mercury with fly ash from the flue gas, introducing activated carbon to remove mercury from the flue gas, and collecting the fly ash, activated carbon, and associated mercury in a particulate control device.
    Type: Application
    Filed: December 2, 2005
    Publication date: June 7, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vitali Lissianski, Randy Seeker, Peter Maly
  • Publication number: 20070116619
    Abstract: A method for continuously removing mercury from a supply of combustion gas is provided. The method includes adjusting a power input to an electrostatic precipitator to control a quantity of fly ash emitted from the electrostatic precipitator. A turbulent flow of combustion gas is produced to suspend particulate matter including the quantity of fly ash contained in the supply of combustion gas. A substantial portion of the mercury is absorbed within the particulate matter including the quantity of fly ash. The supply of combustion gas is filtered to remove the particulate matter from the mercury. A quantity of absorption sites available for absorbing mercury is controlled by monitoring an emission of fly ash from the electrostatic precipitator.
    Type: Application
    Filed: November 18, 2005
    Publication date: May 24, 2007
    Inventors: Robert Taylor, Vitali Lissianski, William Seeker
  • Publication number: 20060021554
    Abstract: A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
    Type: Application
    Filed: September 29, 2005
    Publication date: February 2, 2006
    Applicant: General Electric Company
    Inventors: Vitali Lissianski, Peter Maly, William Seeker, Roy Payne, Vladimir Zamansky, Loc Ho
  • Publication number: 20060008757
    Abstract: Methods and systems for reducing nitrogen oxides in combustion flue gas is provided. The method includes combusting a fuel in a main combustion zone such that a flow of combustion flue gas is generated wherein the combustion flue gas includes at least one nitrogen oxide species, establishing a fuel-rich zone, forming a plurality of reduced N-containing species in the fuel rich zone, injecting over-fire air into the combustion flue gas downstream of fuel rich zone, and controlling process parameters to provide conditions for the reduced N-containing species to react with the nitrogen oxides in the OFA zone to produce elemental nitrogen such that a concentration of nitrogen oxides is reduced.
    Type: Application
    Filed: July 6, 2004
    Publication date: January 12, 2006
    Inventors: Vladimir Zamansky, Vitali Lissianski, Boris Eiteneer
  • Publication number: 20050274307
    Abstract: A method for capturing mercury in a flue gas formed by solid fuel combustion including: combusting coal, wherein mercury released during combustion is entrained in flue gas generated by the combustion; generating a thermally activated carbon-containing sorbent by partially gasifying a solid fuel in a gasifier local to the combustion of solid fuel; injecting the gasified gas products into the combustion of coal; injecting the thermally activated sorbent in the flue gas, and collecting the injected sorbent in a waste treatment system.
    Type: Application
    Filed: June 14, 2004
    Publication date: December 15, 2005
    Applicant: General Electric Company
    Inventors: Vitali Lissianski, Peter Maly, William Seeker, Loc Ho
  • Publication number: 20050158223
    Abstract: A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 21, 2005
    Applicant: General Electric Company
    Inventors: Vitali Lissianski, Peter Maly, William Seeker, Roy Payne, Vladimir Zamansky, Loc Ho
  • Publication number: 20050147549
    Abstract: A method to reduce emissions in flue gas due to combustion of coal in a combustion unit including the steps of: combusting coal in a primary combustion zone of the combustion unit; releasing elemental mercury from the combustion into the flue gas; injecting NH4Cl, NH4Br, or NH4I into the flue gas; oxidizing the elemental mercury with halogen from the additive; adsorbing the oxidized mercury generated by the combustion of the coal with an adsorbent in the flue gas, and collecting the adsorbent with the oxidized mercury in a combustion waste treatment system.
    Type: Application
    Filed: January 6, 2004
    Publication date: July 7, 2005
    Applicant: General Electric Company
    Inventors: Vitali Lissianski, Peter Maly, William Seeker, Vladimir Zamansky