Patents by Inventor Vladimir P. Marin

Vladimir P. Marin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11634520
    Abstract: A process of preparing a solid catalyst component for the production of polypropylene includes a) dissolving a halide-containing magnesium compound in a mixture, the mixture including an epoxy compound, an organic phosphorus compound, and a hydrocarbon solvent to form a homogenous solution; b) treating the homogenous solution with an organosilicon compound during or after the dissolving step; c) treating the homogenous solution with a first titanium compound in the presence of a first non-phthalate electron donor, and an organosilicon compound, to form a solid precipitate; and d) treating the solid precipitate with a second titanium compound in the presence of a second non-phthalate electron donor to form the solid catalyst component, where the process is free of carboxylic acids and anhydrides.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: April 25, 2023
    Assignee: W.R. Grace & Co.-CONN.
    Inventors: Vladimir P. Marin, Ahmed Hintolay
  • Publication number: 20220289881
    Abstract: A process of preparing a solid catalyst component for the production of polypropylene includes a) dissolving a halide-containing magnesium compound in a mixture, the mixture including an epoxy compound, an organic phosphorus compound, and a hydrocarbon solvent to form a homogenous solution; b) treating the homogenous solution with an organosilicon compound during or after the dissolving step; c) treating the homogenous solution with a first titanium compound in the presence of a first non-phthalate electron donor, and an organosilicon compound, to form a solid precipitate; and d) treating the solid precipitate with a second titanium compound in the presence of a second non-phthalate electron donor to form the solid catalyst component, where the process is free of carboxylic acids and anhydrides.
    Type: Application
    Filed: May 25, 2022
    Publication date: September 15, 2022
    Applicant: W. R. Grace & Co.-Conn.
    Inventors: Vladimir P. Marin, Ahmed Hintolay
  • Patent number: 11421056
    Abstract: The present disclosure is generally directed to polyolefin polymers, such as polypropylene homopolymers, and propylene-ethylene copolymers that have improved flow properties. In one embodiment, the polymers can be produced using a solid catalyst component that includes a) dissolving a halide-containing magnesium compound in a mixture, the mixture including an epoxy compound, an organic phosphorus compound, and a hydrocarbon solvent to form a homogenous solution; b) treating the homogenous solution with an organosilicon compound during or after the dissolving step; c) treating the homogenous solution with a first titanium compound in the presence of a first non-phthalate electron donor, and an organosilicon compound, to form a solid precipitate; and d) treating the solid precipitate with a second titanium compound in the presence of a second non-phthalate electron donor to form the solid catalyst component, where the process is free of carboxylic acids and anhydrides.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 23, 2022
    Assignee: W.R. GRACE & CO.-CONN.
    Inventors: Vladimir P. Marin, Jan Van Egmond, Ahmed Hintolay
  • Patent number: 11370854
    Abstract: A solid catalyst component for use in olefinic polymerization, includes titanium, magnesium, a halogen, and an internal electron donor compound; wherein: the internal electron donor compound is at least one compound represented by Formula (I)):
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: June 28, 2022
    Assignees: Braskem America, Inc., W.R. Grace & Co.-CONN.
    Inventors: Binh Thanh Nguyen, Jonas Alves Fernandes, Vladimir P. Marin, Mushtaq Ahmed Patel
  • Patent number: 11236181
    Abstract: A process for preparing a solid pre-catalyst component for use in olefinic polymerization includes dissolving a magnesium chloride in an alcohol and optionally adding water to form a first solution having a water content of about 0.5 mmol water per mol MgCl2 to about 100 mmol water per mol MgCl2; contacting the first solution with a first titanium compound to form the solid pre-catalyst component; and treating the solid pre-catalyst component with a hydrocarbon or halogenated hydrocarbon solvent, optionally containing a second titanium compound.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 1, 2022
    Assignee: W.R. Grace & Co.-CONN.
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Neil J. O'Reilly
  • Publication number: 20200283553
    Abstract: A process of preparing a solid catalyst component for the production of polypropylene includes a) dissolving a halide-containing magnesium compound in a mixture, the mixture including an epoxy compound, an organic phosphorus compound, and a hydrocarbon solvent to form a homogenous solution; b) treating the homogenous solution with an organosilicon compound during or after the dissolving step; c) treating the homogenous solution with a first titanium compound in the presence of a first non-phthalate electron donor, and an organosilicon compound, to form a solid precipitate; and d) treating the solid precipitate with a second titanium compound in the presence of a second non-phthalate electron donor to form the solid catalyst component, where the process is free of carboxylic acids and anhydrides.
    Type: Application
    Filed: November 6, 2018
    Publication date: September 10, 2020
    Inventors: Vladimir P. Marin, Ahmed Hintolay
  • Publication number: 20200270381
    Abstract: The present disclosure is generally directed to polyolefin polymers, such as polypropylene homopolymers, and propylene-ethylene copolymers that have improved flow properties. In one embodiment, the polymers can be produced using a solid catalyst component that includes a) dissolving a halide-containing magnesium compound in a mixture, the mixture including an epoxy compound, an organic phosphorus compound, and a hydrocarbon solvent to form a homogenous solution; b) treating the homogenous solution with an organosilicon compound during or after the dissolving step; c) treating the homogenous solution with a first titanium compound in the presence of a first non-phthalate electron donor, and an organosilicon compound, to form a solid precipitate; and d) treating the solid precipitate with a second titanium compound in the presence of a second non-phthalate electron donor to form the solid catalyst component, where the process is free of carboxylic acids and anhydrides.
    Type: Application
    Filed: November 13, 2018
    Publication date: August 27, 2020
    Inventors: Vladimir P. Marin, Jan Van Egmond, Ahmed Hintolay
  • Publication number: 20200247920
    Abstract: A process for preparing a solid pre-catalyst component for use in olefinic polymerization includes dissolving a magnesium chloride in an alcohol and optionally adding water to form a first solution having a water content of about 0.5 mmol water per mol MgCl2 to about 100 mmol water per mol MgCl2; contacting the first solution with a first titanium compound to form the solid pre-catalyst component; and treating the solid pre-catalyst component with a hydrocarbon or halogenated hydrocarbon solvent, optionally containing a second titanium compound.
    Type: Application
    Filed: August 23, 2018
    Publication date: August 6, 2020
    Applicant: W.R. GRACE & CO.-CONN.
    Inventors: Vladimir P. MARIN, Ahmed HINTOLAY, Neil J. O'REILLY
  • Publication number: 20200223958
    Abstract: A solid catalyst component for use in olefinic polymerization, includes titanium, magnesium, a halogen, and an internal electron donor compound; wherein: the internal electron donor compound is at least one compound represented by Formula (I)):
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Applicants: W.R. GRACE & CO.-CONN., BRASKEM AMERICA, INC.
    Inventors: Binh Thanh NGUYEN, Jonas Alves FERNANDES, Vladimir P. MARIN, Mushtaq Ahmed PATEL
  • Patent number: 10662267
    Abstract: A solid catalyst component for use in olefinic polymerization, includes titanium, magnesium, a halogen, and an internal electron donor compound; wherein: the internal electron donor compound is at least one compound represented by Formula (I)).
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: May 26, 2020
    Assignees: W.R. GRACE & CO. -CONN., BRASKEM AMERICA, INC.
    Inventors: Binh Thanh Nguyen, Jonas Alves Fernandes, Vladimir P. Marin, Mushtaq Ahmed Patel
  • Publication number: 20190270831
    Abstract: A solid catalyst component for use in olefinic polymerization, includes titanium, magnesium, a halogen, and an internal electron donor compound; wherein: the internal electron donor compound is at least one compound represented by Formula (I)).
    Type: Application
    Filed: May 26, 2016
    Publication date: September 5, 2019
    Inventors: Binh Thanh NGUYEN, Jonas Alves FERNANDES, Vladimir P. MARIN, Mushtaq Ahmed PATEL
  • Patent number: 10273321
    Abstract: Solid catalyst components for use in olefin polymerization, olefin polymerization catalyst systems containing the solid catalyst components, methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing and copolymerizing olefins involving the use of the catalyst systems. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 30, 2019
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Michael Donald Spencer
  • Patent number: 9738736
    Abstract: Solid catalyst components are disclosed including titanium, magnesium, halogen and an internal electron donor compound having a combination of internal electron donor compounds including at least one 1,8-naphthyl diester and at least one secondary internal donor compound selected from alkyl 2-alkoxy-1-naphthoates, alkyl 2-alkoxybenzoates, alkyl 2,6-dialkoxybenzoates, (2-alkoxyphenyl)(pyrrolidin-1-yl)alkanones, dialkyl phthalates, alkyl alkionates, and dialkyl cyclohexane-1,2-dicarboxylates, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. Further, methods of making the catalyst components and the catalyst systems are disclosed as well as methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: August 22, 2017
    Assignee: W. R. GRACE & CO.-CONN
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Main Chang, Neil O'Reilly, Binh Thanh Nguyen
  • Patent number: 9714302
    Abstract: A method of making a solid catalyst component for production of a polyolefin, including the steps of: a) dissolving a halide-containing magnesium compound in a mixture including alkylepoxide, an organic phosphorous compound, a carboxylic acid or anhydride, and a hydrocarbon solvent to form a homogenous solution; b) optionally treating the homogeneous solution with a halogenating agent; c) treating the homogenous solution with a first titanium halide compound in the presence of a surface modifier and optionally a first electron donor to form a solid precipitate, wherein, if present, the first electron donor is an ether; d) optionally treating the solid precipitate with a second electron donor; and e) treating the solid precipitate with a second titanium halide compound and optionally with a second electron donor to form the solid catalyst component.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 25, 2017
    Assignee: W. R. GRACE & CO.—CONN.
    Inventors: Kayo Umezawa-Vizzini, Vladimir P. Marin, Michael Spencer, Neil J. O'Reilly, Ahmed Hintolay
  • Publication number: 20170096503
    Abstract: Solid catalyst components for use in olefin polymerization, olefin polymerization catalyst systems containing the solid catalyst components, methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing and copolymerizing olefins involving the use of the catalyst systems. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 6, 2017
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Michael Donald Spencer
  • Patent number: 9593182
    Abstract: Solid catalyst components for use in olefin polymerization, systems incorporating the same, methods of producing the same, and methods of use are disclosed. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: March 14, 2017
    Assignee: W.R.Grace & Co.-Conn.
    Inventors: Vladimir P. Marin, Ahmed Hintolay, Michael Donald Spencer
  • Publication number: 20160102156
    Abstract: A method of making a solid catalyst component for production of a polyolefin, including the steps of: a) dissolving a halide-containing magnesium compound in a mixture including alkylepoxide, an organic phosphorous compound, a carboxylic acid or anhydride, and a hydrocarbon solvent to form a homogenous solution; b) optionally treating the homogeneous solution with a halogenating agent; c) treating the homogenous solution with a first titanium halide compound in the presence of a surface modifier and optionally a first electron donor to form a solid precipitate, wherein, if present, the first electron donor is an ether; d) optionally treating the solid precipitate with a second electron donor; and e) treating the solid precipitate with a second titanium halide compound and optionally with a second electron donor to form the solid catalyst component.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 14, 2016
    Inventors: Kayo UMEZAWA-VIZZINI, Vladimir P. MARIN, Michael SPENCER, Neil J. O'REILLY, Ahmed HINTOLAY
  • Publication number: 20160046740
    Abstract: Solid catalyst components are disclosed including titanium, magnesium, halogen and an internal electron donor compound having a combination of internal electron donor compounds including at least one 1,8-naphthyl diester and at least one secondary internal donor compound selected from alkyl 2-alkoxy-1-naphthoates, alkyl 2-alkoxybenzoates, alkyl 2,6-dialkoxybenzoates, (2-alkoxyphenyl)(pyrrolidin-1-yl)alkanones, dialkyl phthalates, alkyl alkionates, and dialkyl cyclohexane-1,2-dicarboxylates, and catalyst systems containing the catalyst solid components, organoaluminum compounds, and organosilicon compounds. Further, methods of making the catalyst components and the catalyst systems are disclosed as well as methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 18, 2016
    Inventors: Vladimir P. MARIN, Ahmed HINTOLAY, Main CHANG, Neil O'REILLY, Binh Thanh NGUYEN
  • Publication number: 20140128556
    Abstract: Solid catalyst components for use in olefin polymerization, olefin polymerization catalyst systems containing the solid catalyst components, methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing and copolymerizing olefins involving the use of the catalyst systems. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: BASF Corporation
    Inventors: Vladimir P. MARIN, Ahmed HINTOLAY, Michael Donald SPENCER
  • Patent number: 7649064
    Abstract: In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A? and A? are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: January 19, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez