Patents by Inventor Wade Meese

Wade Meese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7531709
    Abstract: Accelerated dechlorination of soil and water contaminated with chlorinated solvents is achieved by stimulating anaerobic microorganisms and thus increasing the rate of biological mineralization of the solvents. This is accomplished by a treatment process consisting of colloidal suspension of metal powder, an organic hydrogen donor, chemical oxygen scavengers in solution with essential nutrients, and vitamin stimulants such as B2 and B12 delivered via compressed gases N or CO2 so as not to oxygenate an environment targeted for anaerobic processes. The treatment stimulates naturally occurring microorganisms while oxidizing dissolved phase target compounds via the surface action of the iron particles resulting in the breakdown of chlorinated solvents such as tetrachloroethene, trichloroethene, carbon tetrachloride and their daughter products.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 12, 2009
    Assignee: Innovative Environmental Technologies, Inc.
    Inventors: Michael Scalzi, Wade Meese
  • Patent number: 7129388
    Abstract: Accelerated dechlorination of soil and water contaminated with chlorinated solvents is achieved by stimulating anaerobic microorganisms and thus increasing the rate of biological mineralization of the solvents. This is accomplished by a treatment process consisting of colloidal suspension of iron powder, polylactate ester such as glycerol tripolylactate, xylitol pentapolylactate, and sorbitol hexapolylactate, chemical oxygen scavengers in solution with essential nutrients, and vitamin stimulants such as B2 and B12 delivered via compressed gases N or C02 so as not to oxygenate an environment targeted for anaerobic processes. The treatment stimulates naturally occurring microorganisms while oxidizing dissolved phase target compounds via the surface action of the iron particles resulting in the breakdown of chlorinated solvents such as tetrachloroethene, trichloroethene, carbon tetrachloride and their daughter products.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: October 31, 2006
    Assignee: Innovative Environmental Technologies, Inc.
    Inventors: Michael Scalzi, Wade Meese
  • Publication number: 20060223162
    Abstract: Accelerated dechlorination of soil and water contaminated with chlorinated solvents is achieved by stimulating anaerobic microorganisms and thus increasing the rate of biological mineralization of the solvents. This is accomplished by a treatment process consisting of colloidal suspension of metal powder, an organic hydrogen donor, chemical oxygen scavengers in solution with essential nutrients, and vitamin stimulants such as B2 and B12 delivered via compressed gases N or CO2 so as not to oxygenate an environment targeted for anaerobic processes. The treatment stimulates naturally occurring microorganisms while oxidizing dissolved phase target compounds via the surface action of the iron particles resulting in the breakdown of chlorinated solvents such as tetrachloroethene, trichloroethene, carbon tetrachloride and their daughter products.
    Type: Application
    Filed: June 13, 2006
    Publication date: October 5, 2006
    Applicant: INNOVATIVE ENVIRONMENTAL TECHNOLOGIES, INC.
    Inventors: Michael Scalzi, Wade Meese
  • Patent number: 7044152
    Abstract: A pressurized delivery system for in-situ delivery of sub-soil remediation compounds to underground contaminated matter includes a liquid diaphragm pump connected to an inflow source of water, the pump being also in fluid communication with a plurality of bioslurry tanks connected in parallel, the bioslurry tanks each having a drain. Valve means are located between the liquid diaphragm pump and each of the bioslurry tanks for controlling either the alternate or simultaneous flow of fluid from the pump to each of the bioslurry tanks. A second liquid diaphragm pump having an inlet port for receiving the combined flow of the bioslurry tanks has an outlet in fluid communication with a system discharge port. The system further includes a source of compressed gas in fluid communication with the discharge port. A discharge rod is connected to the discharge port for delivery of remedial fluids to underground soils.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 16, 2006
    Assignee: Innovative Environmental Technologies, Inc.
    Inventors: Michael Scalzi, Wade Meese
  • Publication number: 20040133059
    Abstract: Accelerated dechlorination of soil and water contaminated with chlorinated solvents is achieved by stimulating anaerobic microorganisms and thus increasing the rate of biological mineralization of the solvents. This is accomplished by a treatment process consisting of colloidal suspension of iron powder, polylactate ester such as glycerol tripolylactate, xylitol pentapolylactate, and sorbitol hexapolylactate, chemical oxygen scavengers in solution with essential nutrients, and vitamin stimulants such as B2 and B12 delivered via compressed gases N or CO2 so as not to oxygenate an environment targeted for anaerobic processes. The treatment stimulates naturally occurring microorganisms while oxidizing dissolved phase target compounds via the surface action of the iron particles resulting in the breakdown of chlorinated solvents such as tetrachloroethene, trichloroethene, carbon tetrachloride and their daughter products.
    Type: Application
    Filed: July 2, 2003
    Publication date: July 8, 2004
    Inventors: Michael Scalzi, Wade Meese
  • Publication number: 20040129319
    Abstract: A pressurized delivery system for in-situ delivery of sub-soil remediation compounds to underground contaminated matter includes a liquid diaphragm pump connected to an inflow source of water, the pump being also in fluid communication with a plurality of bioslurry tanks connected in parallel, the bioslurry tanks each having a drain. Valve means are located between the liquid diaphragm pump and each of the bioslurry tanks for controlling either the alternate or simultaneous flow of fluid from the pump to each of the bioslurry tanks. A second liquid diaphragm pump having an inlet port for receiving the combined flow of the bioslurry tanks has an outlet in fluid communication with a system discharge port. The system further includes a source of compressed gas in fluid communication with the discharge port. A discharge rod is connected to the discharge port for delivery of remedial fluids to underground soils.
    Type: Application
    Filed: October 3, 2003
    Publication date: July 8, 2004
    Inventors: Michael Scalzi, Wade Meese