Patents by Inventor Walter Adriaan Kramer

Walter Adriaan Kramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885487
    Abstract: A heat recovery steam generator includes an exhaust-gas channel with an economizer heating surface and evaporator heating surface. The heating surfaces are connected to one another such that, on a feed water side, the economizer heating surface is upstream of the evaporator heating surface. A water/steam separator is arranged on the feed water side downstream of the evaporator heating surface. An excess pipe length system is outside the exhaust-gas channel and is designed in such a way that, after a complete filling of the economizer heating surface, feed water, in a riser of the excess pipe length system, reaches an overflow and thus passes into the evaporator heating surface via a down pipe. A vent line branches off the overflow of the excess pipe length system. A first filling line and a first valve are arranged between an economizer filling outlet and the evaporator outlet of the evaporator heating surface.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: January 30, 2024
    Assignee: NEM ENERGY B.V.
    Inventor: Walter Adriaan Kramer
  • Publication number: 20220412548
    Abstract: A heat recovery steam generator includes an exhaust-gas channel with an economizer heating surface and evaporator heating surface. The heating surfaces are connected to one another such that, on a feed water side, the economizer heating surface is upstream of the evaporator heating surface. A water/steam separator is arranged on the feed water side downstream of the evaporator heating surface. An excess pipe length system is outside the exhaust-gas channel and is designed in such a way that, after a complete filling of the economizer heating surface, feed water, in a riser of the excess pipe length system, reaches an overflow and thus passes into the evaporator heating surface via a down pipe. A vent line branches off the overflow of the excess pipe length system. A first filling line and a first valve are arranged between an economizer filling outlet and the evaporator outlet of the evaporator heating surface.
    Type: Application
    Filed: October 8, 2020
    Publication date: December 29, 2022
    Applicant: Siemens Energy B.V.
    Inventor: Walter Adriaan Kramer
  • Patent number: 10907823
    Abstract: An evaporator system for an industrial boiler, containing a heat transfer system, a separator for separating water and steam and a dryer for drying the separated wet steam. A horizontal vessel contains a required minimum amount of water, a relatively small steam volume and internals for the separation of water and wet-steam. A vertical vessel contains internals for drying the wet steam to predetermined values by separating liquid from the wet-steam. The horizontal vessel and the vertical vessel are connected to each other by wet-steam piping through which separated wet-steam is transported from the horizontal vessel to the vertical vessel. The vertical vessel has a connection to dry-steam piping for discharging dried steam. The vertical vessel has a connection to a liquid drain piping for transporting liquid from the vertical vessel back to the inlet conduits of the evaporator heat transfer section.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 2, 2021
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Walter Adriaan Kramer
  • Publication number: 20190249865
    Abstract: An evaporator system for an industrial boiler, containing a heat transfer system, a separator for separating water and steam and a dryer for drying the separated wet steam. A horizontal vessel contains a required minimum amount of water, a relatively small steam volume and internals for the separation of water and wet-steam. A vertical vessel contains internals for drying the wet steam to predetermined values by separating liquid from the wet-steam. The horizontal vessel and the vertical vessel are connected to each other by wet-steam piping through which separated wet-steam is transported from the horizontal vessel to the vertical vessel. The vertical vessel has a connection to dry-steam piping for discharging dried steam. The vertical vessel has a connection to a liquid drain piping for transporting liquid from the vertical vessel back to the inlet conduits of the evaporator heat transfer section.
    Type: Application
    Filed: October 24, 2017
    Publication date: August 15, 2019
    Applicant: Siemens Aktiengesellschaft
    Inventor: Walter Adriaan Kramer
  • Patent number: 8915217
    Abstract: A steam generator includes a substantially horizontal gas conduit (1) to guide a heating gas flow (2) and an evaporator unit positioned at least partially in the horizontal gas conduit for transferring heat from the heating gas to a flow medium which flows through the evaporator unit. The heat transfer section of the evaporator unit of the steam generator is bottom fed, which means that the inlet conduit is arranged at a lower region of the heat transfer section. The outlet conduit is arranged at an upper region. The inlet conduit allows an once through operation of the evaporator section which is necessary to enable operation under supercritical circumstances. The evaporator unit includes at least two evaporator stages (3, 4) which are arranged in a cascade. Each evaporator stage includes a heat transfer section (12, 21) and a separator (14, 23). The presence of the separators (14, 23) subdivides the evaporator unit into evaporator stages (3, 4).
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: December 23, 2014
    Assignee: NEM Energy B.V.
    Inventors: Peter Simon Rop, Walter Adriaan Kramer
  • Publication number: 20120180739
    Abstract: A steam generator includes a substantially horizontal gas conduit (1) to guide a heating gas flow (2) and an evaporator unit positioned at least partially in the horizontal gas conduit for transferring heat from the heating gas to a flow medium which flows through the evaporator unit. The heat transfer section of the evaporator unit of the steam generator is bottom fed, which means that the inlet conduit is arranged at a lower region of the heat transfer section. The outlet conduit is arranged at an upper region. The inlet conduit allows an once through operation of the evaporator section which is necessary to enable operation under supercritical circumstances. The evaporator unit includes at least two evaporator stages (3, 4) which are arranged in a cascade. Each evaporator stage includes a heat transfer section (12, 21) and a separator (14, 23). The presence of the separators (14, 23) subdivides the evaporator unit into evaporator stages (3, 4).
    Type: Application
    Filed: October 6, 2010
    Publication date: July 19, 2012
    Applicant: NEM ENERGY B.V.
    Inventors: Peter Simon Rop, Walter Adriaan Kramer