Patents by Inventor Walter Muller

Walter Muller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10673590
    Abstract: A method performed by a network node for managing transmission of Cell Reference Symbols, CRS, wherein the network node 110 operates one or more cells and the network node 110 is configured to transmit the CRS in a first bandwidth mode. When the network node 110 has identified a cell 130 which is not actively serving any UEs 120, also referred to as an empty cell, the network node 110 applies (302) a reduced CRS bandwidth mode in the first cell 130 in relation to the first bandwidth mode. By applying (302) a reduced CRS bandwidth mode in the empty cell 130, the overall interference of the CRS from the empty cell 130 is reduced, thereby enhancing the performance in cells actively serving UEs 120.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 2, 2020
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: Tomas Lagerqvist, Walter Müller, Christian Skärby
  • Publication number: 20200169904
    Abstract: A wireless device (400), a higher layer node (404) and methods therein, for handling measurement reporting in a wireless network as performed by the wireless device (400). The wireless device (400) detects (4:1) a coverage object being a cell or a beam not contained in a predefined first list of coverage objects for which the wireless device (400) is required to send measurement reports to a lower layer node (402) operable according to at least one of layer 1 and layer 2. The wireless device (400) then measures a radio signal of the coverage object where the measured radio signal fulfils a predefined event condition, and sends (4:2B) a measurement report of said measuring to a higher layer node (404) operable according to one or more layers above layer 1 and layer 2.
    Type: Application
    Filed: May 12, 2017
    Publication date: May 28, 2020
    Inventor: Walter Müller
  • Publication number: 20200154298
    Abstract: A technique for determining signal quality of a radio access network, RAN, (502) comprising a plurality of transmission-reception points, TRxPs (504), is described. A method aspect of the technique comprises or initiates receiving a control message for determining the signal quality based on a measurement of a reference signal (516.21) from a second TRxP (504.4) at a radio resource. The control message is indicative of the radio resource for the reference signal relative to a synchronization signal (512.1) from a first TRxP (504.1; 504.2; 504.3) other than the second TRxP.
    Type: Application
    Filed: January 9, 2020
    Publication date: May 14, 2020
    Inventors: Rasmus Axén, Walter Müller
  • Patent number: 10638253
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200128448
    Abstract: A method is disclosed performed by a first network node (110) of a wireless communication system (100) for handling of a UE (150) connected to the first network node (110), wherein a second network node (120) of the communication system (100) has a first transmission resource (130) for wireless transmission using a first access technology and a second transmission resource (140) for wireless transmission using a second access technology. The first and the second transmission resources (130, 140) are collocated. The method comprises receiving, from the UE (150), an indication of fulfilled transmission condition for transmission from the second transmission resource (140) to the UE (150), the indication being based on a transmission quality measurement performed by the UE (150) on a wireless signal transmitted by the first transmission resource (130), and determining whether the UE (150) is to be served by the second access technology transmission resource (140) of the second network node (120).
    Type: Application
    Filed: May 16, 2017
    Publication date: April 23, 2020
    Inventor: Walter Müller
  • Patent number: 10631222
    Abstract: Methods, nodes, computer programs, computer program products and a mobile network for adapting a mobile network are described. In such a method for adapting a mobile network (800), a terminal (802) is connected to a first access node (804) of the mobile network (800) via a first connection and to a second access node (808) via a second connection. The first access node (804) controls a data transmission for the terminal (802) and the second access node (808) assists in the data transmission for the terminal (802). The method comprises determining (7) whether a quality of at least one of the first connection and the second connection is degraded, acquiring (7) quality degradation information about the degradation of the quality of at least one of the first connection and the second connection based on the step of determining, and adapting (896, 8, 898, 899, 10, 11) the mobile network (800) based on the step of acquiring.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Torsten Dudda, Walter Müller, Mattias Bergström, Stefan Wager, Zhiyi Xuan
  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120559
    Abstract: Embodiments include exemplary methods and/or procedures performed by a central unit, CU (110) that together with first and second distributed units, DUs (120, 130), comprise a node (100, 1160) of a wireless communication network. Embodiments include receiving (830) from the first DU, prior to occurrence of a first event concerning a user equipment, UE (1110) that is in communication with the first DU, a lower-layer configuration of the UE. Embodiments also include storing (840) the lower-layer configuration of the UE, and sending (870), to the second DU, a setup request comprising the stored lower-layer configuration of the UE. Embodiments also include receiving (880), from the second DU, a setup response comprising a first delta configuration indicating one or more differences between a lower-layer configuration of the second DU and the stored lower-layer configuration. Embodiments also include sending (890), to the first DU, a modification request comprising the first delta configuration.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 16, 2020
    Inventors: Angelo Centonza, Matteo Fiorani, Walter Müller
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200092733
    Abstract: The invention refers to a method performed by a radio network node (200), wherein the radio access network comprises a central unit, CU (220), and a distributed unit, DU (210), comprising obtaining (502) one or more criteria for determining a preferable location for a UE context controller in the radio access network node, the UE context controller managing a connection between a UE (100) and the radio access network node (200); and determining (504), based on the one or more criteria, whether the UE context controller shall be located in the CU (220) and/or in the DU (210). The invention further related to a corresponding radio network node (200).
    Type: Application
    Filed: June 18, 2018
    Publication date: March 19, 2020
    Inventors: Elena Myhre, Walter Müller
  • Patent number: 10583093
    Abstract: The invention relates to a transdermal therapeutic system (TTS), comprising a backing layer, which is permeable to the active ingredient, at least one matrix layer, comprising fentanyl or an active agent analogous to fentanyl, based on polyacrylate and a protective layer to be removed before usage, characterized in that the polyacrylate polymer is self-adhesive, free of carboxyl groups, has a saturation solubility for fentanyl of 3 to 20 wt. %, preferably of 4 to 12 and particularly of 5 to 10 wt. % and the layers contain at least 80% of the included active ingredient in a molecularly-dispersed, dissolved form.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 10, 2020
    Assignee: LTS LOHMANN THERAPIE-SYSTEME AG
    Inventors: Walter Müller, Thomas Hille
  • Publication number: 20200060985
    Abstract: The invention relates to a transdermal therapeutic system on the basis of polysiloxane which contains microreservoirs filled with an active substance and one ambiphilic solvent.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 27, 2020
    Inventor: Walter Müller
  • Patent number: 10568845
    Abstract: The invention relates to a transdermal therapeutic system (TTS), comprising a backing layer, which is permeable to the active ingredient, at least one matrix layer, comprising fentanyl or an active agent analogous to fentanyl, based on polyacrylate and a protective layer to be removed before usage, characterized in that the polyacrylate polymer is self-adhesive, free of carboxyl groups, has a saturation solubility for fentanyl of 3 to 20 wt. %, preferably of 4 to 12 and particularly of 5 to 10 wt. % and the layers contain at least 80% of the included active ingredient in a molecularly-dispersed, dissolved form.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: February 25, 2020
    Assignee: LTS LOHMANN THERAPIE-SYSTEME AG
    Inventors: Walter Müller, Thomas Hille
  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10532033
    Abstract: The invention relates to a transdermal therapeutic system on the basis of polysiloxane which contains microreservoirs filled with an active substance and one ambiphilic solvent.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: January 14, 2020
    Assignee: LTS LOHMANN Therapie-Systeme AG
    Inventor: Walter Müller
  • Patent number: 10536873
    Abstract: A technique for determining signal quality of a radio access network, RAN, (502) comprising a plurality of transmission-reception points, TRxPs (504), is described. A method aspect of the technique comprises or initiates receiving a control message for determining the signal quality based on a measurement of a reference signal (516.21) from a second TRxP (504.4) at a radio resource. The control message is indicative of the radio resource for the reference signal relative to a synchronization signal (512.1) from a first TRxP (504.1; 504.2; 504.3) other than the second TRxP.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: January 14, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Rasmus Axén, Walter Müller
  • Patent number: 10523299
    Abstract: There is provided mechanisms for shaping transmission beams in a wireless communications network. A method is performed by a network node. The method comprises acquiring channel measurements for wireless devices served by radio access network nodes using current beam forming parameters and being controlled by the network node. The method comprises determining, based on the channel measurements, desired beam forming parameters for shaping the transmission beams for at least one of the radio access network nodes. The method comprises initiating a gradual change of the current beam forming parameters to the desired beam forming parameters for shaping the transmission beams for the at least one of the radio access network nodes. The gradual change causes a need for network controlled handover to occur for at least some of the wireless devices served by the radio access network nodes.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: December 31, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andreas Nilsson, Bo Hagerman, Niklas Jaldén, Walter Müller
  • Patent number: 10517023
    Abstract: Support of mobility for a communication device (120) being served in a serving beam (115a) transmitted by a first network node (110) comprised in a wireless communication network (100). The first network node (110) and the communication device (120) obtains (301a, 302; 701, 901) a first information set comprising predetermined identifiers identifying reference signals, respectively. The first network node (110) maintains (310; 904) a third information set that associates one or more candidate beams (115b, 116a-c), other than the serving beam (115a), with one or more predetermined identifiers of the first information set, which one or more predetermined identifiers identify reference signals that are being transmitted in said one or more candidate beams (115, 116a-c).
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: December 24, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Håkan Axelsson, Mehdi Amirijoo, Rasmus Axén, Patrik Karlsson, Walter Müller, Christer Östberg, Henrik Ronkainen, Thomas Walldeen
  • Patent number: 10512109
    Abstract: A method performed by a transmitting communication device for handling communication for a wireless device in a communication network. The communication network comprises one or more networks comprising partitioned sets of functionalities wherein a first set of functionalities belongs to a first network slice supporting the wireless device, and which first set of functionalities is separated from another set of functionalities out of a total set of functionalities in the one or more networks. The transmitting communication device transmits a Non Access Stratum Protocol Data Unit (NAS PDU) and an indication over a signalling connection carrying NAS PDUs, to a receiving communication device, which indication indicates that the NAS PDU is associated with the first network slice.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: December 17, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Elena Myhre, Gunnar Mildh, Walter Müller, Göran Rune, Jari Vikberg
  • Patent number: 10484240
    Abstract: The operating configuration at a node in a wireless communication network, at a neighboring node in the network, and/or at one or more wireless devices supported by the network, is updated based on determining timing information for an impending interruption of a radio link in the network to avoid erroneous operation during the impending interruption, which interruption is associated with an external system. The determination of interruption timing, which may be inferred, e.g., from detecting prior interruptions, or which may be known from information about the external system, and the modification of the operating configuration(s) permits the network to operate with greater stability, control, and accuracy during the interruptions than would be possible if the interruptions were simply treated as intermittent radio link failures.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 19, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Muhammad Kazmi, Joakim Axmon, Walter Müller