Patents by Inventor Walter Vincent Dixon

Walter Vincent Dixon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240077438
    Abstract: An apparatus and method for an inspection apparatus for inspecting a component. The inspection apparatus including a robotic arm. A micro-XRF instrument having an instrument head coupled to the robotic arm. A seat supporting the component within a scanning area during inspection; and a computer in communication with the robotic arm and the micro-XRF instrument.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Inventors: Richard DiDomizio, Michael Christopher Andersen, Walter Vincent Dixon, III, Timothy Hanlon, Wayne Lee Lawrence, Ramkumar Kashyap Oruganti, Jonathan Rutherford Owens, Daniel M. Ruscitto, Adarsh Shukla, Eric John Telfeyan, Gregory Donald Crim, Michael Wylie Krauss, André Dziurla, Sven Martin Joachim Larisch, Falk Reinhardt, Roald Alberto Tagle Berdan, Henning Schroeder
  • Patent number: 11507616
    Abstract: A method of inspecting a component includes storing at least one inspection image file in a memory and receiving a search request associated with the at least one inspection image file. The method also includes accessing a database including a plurality of image files, comparing the hash code of the at least one inspection image file to the hash code of each image file of the plurality of image files, and identifying a first subset of image files based on the hash code comparison. The method also includes comparing the feature data of the at least one inspection image file to the feature data of each image file of the first subset of image files and classifying a second subset of image files as relevant based on the feature data comparison. The method further includes generating search results based on the second subset of image files.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Shaopeng Liu, Xiao Bian, Yan Liu, Feng Xue, Walter Vincent Dixon, III, Mark Richard Gilder, Peihong Zhu, Bernard Patrick Bewlay, Byron Andrew Pritchard, Masako Yamada, Colin James Parris
  • Publication number: 20220067083
    Abstract: A method of inspecting a component includes storing at least one inspection image file in a memory and receiving a search request associated with the at least one inspection image file. The method also includes accessing a database including a plurality of image files, comparing the hash code of the at least one inspection image file to the hash code of each image file of the plurality of image files, and identifying a first subset of image files based on the hash code comparison. The method also includes comparing the feature data of the at least one inspection image file to the feature data of each image file of the first subset of image files and classifying a second subset of image files as relevant based on the feature data comparison. The method further includes generating search results based on the second subset of image files.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 3, 2022
    Inventors: Shaopeng Liu, Xiao Bian, Yan Liu, Feng Xue, Walter Vincent Dixon, III, Mark Richard Gilder, Peihong Zhu, Bernard Patrick Bewlay, Byron Andrew Pritchard, Masako Yamada, Colin James Parris
  • Patent number: 8179432
    Abstract: A method of autofocusing includes capturing first, second and third images of a sample, at respective first, second and third sample distances and respective first, second and third lateral positions determined with respect to an objective; determining a quantitative characteristic for the first, second and third images; determining a primary sample distance based upon at least the quantitative characteristics for the first, second, and third images; and capturing a primary image of the sample at the primary sample distance and at a primary lateral position that is offset from the first, second and third lateral positions.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Siavash Yazdanfar, Robert John Filkins, Elizabeth Lockenberg Dixon, Walter Vincent Dixon, legal representative, Krenar Tasimi, Kevin Bernard Kenny
  • Publication number: 20120008828
    Abstract: An imaging detection system includes at least one location detection device configured to determine coordinates of a target, at least one detector configured to detect events from a source associated with the target, and a processor coupled in communication with the at least one location detection device and the at least one detector. The processor is configured to receive the coordinates from the at least one location detection device and the events from the at least one detector, translate the events using the coordinates acquired from the at least one location detection device to compensate for a relative motion between the source and the at least one detector, and output a processed data set having the events translated based on the coordinates.
    Type: Application
    Filed: April 11, 2011
    Publication date: January 12, 2012
    Inventors: Brian David Yanoff, Walter Vincent Dixon, III, Yanfeng Du, Nils Oliver Krahnstoever, Feng Pan
  • Patent number: 7904841
    Abstract: A method and system is described for optimizing a digital filter defined by coefficients that are multiplied by input data and accumulated to generate output data. A factorization set of candidate factors is compiled based on the coefficients. For each of the candidate factors, an optimized solution is generated. To generate the optimized solution, the candidate factor is applied to the coefficients and a working set of terms is compiled. Terms in the working set are converted to power-of-two representations and grouped with other terms that have a common partial sum, or multiple of the partial sum, within their respective power-of-two representations. A reduction set is compiled from the grouped terms and an order of application is selected based on optimization objectives. The reduction set is then applied to the working set of terms to generate the optimized solution, which is ranked and stored based on the optimization objectives.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: March 8, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Walter Vincent Dixon, III, Mark Richard Gilder
  • Patent number: 7522756
    Abstract: A method, system and apparatus for processing a radiographic image of a scanned object is disclosed. A pixel offset correction is performed in integer format on the radiographic image using saturation arithmetic to produce an image in integer format with any negative corrected values clipped to a value of zero. The resulting pixels are converted to floating point format and the converted pixels are multiplied by a gain factor. Optionally the resulting pixels are recursively averaged with previous results. The resulting pixels are converted to integer format and the converted pixel values are clamped to a maximum value using saturation arithmetic. Non-functional pixel correction is performed in integer format and the resulting pixel values are clamped to a maximum value using saturation arithmetic. An optional processing path replaces the recursive average by a linear average. The resulting pixel values are optionally filtered to enhance features of interest.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: April 21, 2009
    Assignee: General Electric Company
    Inventors: Clifford Bueno, Elizabeth Lokenberg Dixon, Walter Vincent Dixon, Forrest Frank Hopkins, Michael Robert Hopple, Brian Walter Lasiuk, Ronald Cecil McFarland, August David Matula, Robert James Mitchell, Jr., Kevin Layne Moermond, Gregory Alan Mohr
  • Publication number: 20090058711
    Abstract: A system for monitoring the integrity of a container having at least one door. The system includes a data interpretation device disposed inside the container. The system further includes a radar sensor interoperably connected to the data interpretation device for monitoring internal conditions of the container and for providing radar data to the data interpretation device, a motion-detection sensor for monitoring motion inside the container, and an antenna interoperably connected to the data interpretation device for communicating information relative to the internal conditions of the container to a location outside the container.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Inventors: Walter Vincent Dixon, Adam Kuenzi, Wayne Floyd Larson, Eric V. Sandberg, Jeroen Te Paske
  • Patent number: 7499599
    Abstract: A method and program product for real-time correction of non-functioning pixels in digital radiography, where the method comprises: receiving a list of non-functioning pixels; determining which neighboring functioning pixels are needed to correct the non-functioning pixels; organizing those neighboring functioning pixels and corresponding non-functioning pixels into a plurality of groups by a number of pixels used to perform correction; and performing correction of data from non-functioning pixels within one of the plurality of groups and subsequently performing correction of data from non-functioning pixels within another one of the plurality of groups.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: March 3, 2009
    Assignee: General Electric Company
    Inventors: Elizabeth Lokenberg Dixon, Walter Vincent Dixon, Clifford Bueno, Gregory Alan Mohr, Brian Walter Lasiuk
  • Publication number: 20080266440
    Abstract: A method of autofocusing includes capturing first, second and third images of a sample, at respective first, second and third sample distances and respective first, second and third lateral positions determined with respect to an objective; determining a quantitative characteristic for the first, second and third images; determining a primary sample distance based upon at least the quantitative characteristics for the first, second, and third images; and capturing a primary image of the sample at the primary sample distance and at a primary lateral position that is offset from the first, second and third lateral positions.
    Type: Application
    Filed: August 23, 2007
    Publication date: October 30, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Siavash Yazdanfar, Robert John Filkins, Elizabeth Lokenberg Dixon, Walter Vincent Dixon, Krenar Tasimi, Kevin Bernard Kenny
  • Publication number: 20080095300
    Abstract: A method and system are provided for processing an acquired image signal in parallel to generate a reconstructed image signal. In one embodiment, a processing component is provided comprising one or more field-programmable gate arrays configured as co-processors. Other aspects of the present technique provide a pipelined processor configured to forward- and back-project image data using the same data path and arithmetic units.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 24, 2008
    Inventors: Stephen Eric Zingelewicz, Austars Raymond Schnore, Walter Vincent Dixon, Samit Kumar Basu, Bruno De Man, William D. Smith
  • Patent number: 7218706
    Abstract: An energy discrimination radiography system includes at least one radiation source configured to alternately irradiate a component with radiation characterized by at least two energy spectra, where the component has a number of constituents. At least one radiation detector is configured to receive radiation passing through the component and a computer is operationally coupled to the detector. The computer is configured to receive data corresponding to each of the energy spectra for a scan of the component, process the data to generate a multi-energy data set, and decompose the multi-energy data set to generate material characterization images in substantially real time. A method for inspecting the component includes irradiating the component, receiving a data stream of energy discriminated data, processing the energy discriminated data, to generate a multi-energy data set, and decomposing the multi-energy data set, to generate material characterization images in substantially real time.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: May 15, 2007
    Assignee: General Electric Company
    Inventors: Forrest Frank Hopkins, Walter Vincent Dixon, Clifford Bueno, Yanfeng Du, Gregory Alan Mohr, Paul Francis Fitzgerald, Thomas William Birdwell
  • Patent number: 6987872
    Abstract: A method and system of processing raw images for display. First, a processor corrects the raw images with respect to an offset image to generate an offset corrected image. Next, a level of the offset corrected image is adjusted with respect to a gain adjust by employing saturation arithmetic to clip the level of the offset corrected image to generate a gain corrected image. Next, a window of the gain corrected image is adjusted with respect to a reference window to generate an output image. Next, the output image is packed into a register for display.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 17, 2006
    Assignee: General Electric Company
    Inventors: Walter Vincent Dixon, David Allen Langan
  • Patent number: 6975752
    Abstract: An imaging system includes a programmable detector framing node controlling generation of radiation and controlling radioscopic image detection. Radioscopic image data is acquired and communicated independently of a host computer operating system. The detector framing node controls events in real time according to an event instruction sequence and communicates received radioscopic image data to host memory through a computer communication bus. Image data is received from a selected flat panel detector of a plurality of different flat panel detectors. The image data is selectively reordered according to parameters of the selected flat panel detector before communication to host memory.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: December 13, 2005
    Assignee: General Electric Company
    Inventors: Walter Vincent Dixon, Nick Andrew Van Stralen, Robert Gideon Wodnicki
  • Patent number: 6970586
    Abstract: A detector framing node controls generation of radiation and radioscopic image detection Radioscopic image data is acquired and communicated independently of a host computer operating system. The detector framing node controls events in real time according to an event instruction sequence and receives the image data by way of an image detection interface into a memory unit. The image data is output from the memory unit to host memory of the host computer through a computer communication interface and under the control of a control unit. The detector framing node selects a flat panel detector from a plurality of different flat panel detectors and the image data is selectively reordered according to parameters of the selected flat panel detector before communication to host memory.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: November 29, 2005
    Assignee: General Electric Company
    Inventors: Richard Dudley Baertsch, Walter Vincent Dixon, Daniel Arthur Staver, Nick Andrew Van Stralen, Robert Gideon Wodnicki
  • Patent number: 6911914
    Abstract: In one embodiment of the present invention, an apparatus for detecting a hot rail car surface comprises: an infrared sensor for acquiring an infrared signal from a rail car surface of a rail car and transducing the infrared signal into an electrical signal; a rank filter for filtering the electrical signal to produce a filtered array; a first peak detector for detecting a maximum filtered value of the filtered array; and a first comparator for comparing the maximum filtered value to a detection threshold to produce a filtered alarm signal.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: June 28, 2005
    Assignee: General Electric Company
    Inventors: Harry Kirk Mathews, Jr., Walter Vincent Dixon, David Michael Davenport, Harry Israel Ringermacher, Paul Kenneth Houpt
  • Patent number: 6901159
    Abstract: An imaging system includes a programmable detector framing node controlling generation of radiation and controlling radioscopic image detection. Radioscopic image data is acquired by the detector framing node and communicated to a host memory of a host computer independently of a host computer operating system. Image data is received from a flat panel detector and is selectively reordered according to parameters of the selected flat panel detector before communication to the host memory. The detector framing node includes an image detection interface to receive the image data and a control unit to select a predetermined portion of the image data for storage into a detector memory unit before communication to the host memory.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: May 31, 2005
    Assignee: General Electric Company
    Inventors: Richard Dudley Baertsch, Walter Vincent Dixon, Daniel Arthur Staver, Nick Andrew Van Stralen, Robert Gideon Wodnicki
  • Publication number: 20040252910
    Abstract: A method and program product for real-time correction of non-functioning pixels in digital radiography, where the method comprises: receiving a list of non-functioning pixels; determining which neighboring functioning pixels are needed to correct the non-functioning pixels; organizing those neighboring functioning pixels and corresponding non-functioning pixels into a plurality of groups by a number of pixels used to perform correction; and performing correction of data from non-functioning pixels within one of the plurality of groups and subsequently performing correction of data from non-functioning pixels within another one of the plurality of groups.
    Type: Application
    Filed: June 12, 2003
    Publication date: December 16, 2004
    Applicant: General Electric Company
    Inventors: Elizabeth Lokenberg Dixon, Walter Vincent Dixon, Clifford Bueno, Gregory Alan Mohr, Brian Walter Lasiuk
  • Patent number: 6753873
    Abstract: An imaging system shares control of host memory between a detector framing node and a host processor. The detector framing node is programmable to control generation and reception of image data. Image data is acquired and communicated to host memory independently from control by a host operating system. The detector framing node controls events according to an event instruction sequence and communicates received image data to the host memory through a computer communication bus. Image data is received by the detector framing node from a flat panel detector. Host memory has a first section managed by the host operating system and a second section not managed by the host operating system. Image data is communicated from the detector framing node into the second section of host memory. Event instruction sequences are communicated from the first section of host memory to the detector framing node to control the generation and reception of image data.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: June 22, 2004
    Assignee: General Electric Company
    Inventors: Walter Vincent Dixon, Nick Andrew Van Stralen, Edward James Nieters
  • Publication number: 20030187605
    Abstract: In one embodiment of the present invention, an apparatus for detecting a hot rail car surface comprises: an infrared sensor for acquiring an infrared signal from a rail car surface of a rail car and transducing the infrared signal into an electrical signal; a rank filter for filtering the electrical signal to produce a filtered array; a first peak detector for detecting a maximum filtered value of the filtered array; and a first comparator for comparing the maximum filtered value to a detection threshold to produce a filtered alarm signal.
    Type: Application
    Filed: May 29, 2002
    Publication date: October 2, 2003
    Applicant: General Electric Company-Global Research Center
    Inventors: Harry Kirk Mathews, Walter Vincent Dixon, David Michael Davenport, Harry Israel Ringermacher, Paul Kenneth Houpt