Patents by Inventor Wang Mo Jung

Wang Mo Jung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230416113
    Abstract: A positive electrode active material including at least one secondary particle comprising an agglomerate of primary macro particles is provided. A method for preparing the same and a lithium secondary battery containing the same are also provided. The positive electrode active material contains secondary particle with improved resistance by simultaneous growth of the average particle size D50 and the crystal size of the primary macro particle. The positive electrode active material has high crystal density and improved life and resistance characteristics by ensuring the movement path of lithium ions and minimizing defects in the crystal structure of the positive electrode active material.
    Type: Application
    Filed: November 25, 2021
    Publication date: December 28, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Ji-Hye Kim, Tae-Gu Yoo, Wang-Mo Jung, Hae-Jung Jung, Chi-Ho Jo, Jong-Wook Heo
  • Publication number: 20230420669
    Abstract: The present invention relates to a positive electrode active material having low nickel disorder and high particle strength in a crystal structure, and capable of implementing a battery having excellent capacity properties and capacity retention, and a positive electrode and a lithium secondary battery including the same, wherein the positive electrode active material includes a large-diameter lithium transition metal oxide and a small-diameter lithium transition metal oxide whose average particle diameter (D50) is smaller than that of the large-diameter lithium transition metal oxide, wherein the large-diameter lithium transition metal oxide and the small-diameter lithium transition metal oxide each independently have a composition represented by Formula 1, and has a crystal grain size of 100 nm to 150 nm, wherein the difference in crystal grain size between the large-diameter lithium transition metal oxide and the small-diameter lithium transition metal oxide is less than 40 nm, and the positive electrode a
    Type: Application
    Filed: November 30, 2021
    Publication date: December 28, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Sang Wook Lee, Dae Jin Lee, Sang Min Park, Min Kwak, Wang Mo Jung, Gi Beom Han, Eun Sol Lho, Joong Yeop Do, Kang Joon Park
  • Publication number: 20230402597
    Abstract: A positive electrode for a lithium secondary battery includes a positive electrode active material layer including: a first positive electrode active material represented by Formula 1 and having a crystalline size of 150 nm or more; a conductive agent including single-walled carbon nanotubes (SWCNTs); and a binder. A lithium secondary battery includes the positive electrode.
    Type: Application
    Filed: December 24, 2021
    Publication date: December 14, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Hyeong II Kim, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11837719
    Abstract: A method for preparing a lithium cobalt-based positive electrode active material and a positive electrode active material prepared by the method are provided. The method includes dry-mixing and then heat treating a lithium cobalt oxide particle represented by Formula 1 and one or more lithium metal oxide particle selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 5, 2023
    Inventors: Chi Ho Jo, Min Kyu You, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Publication number: 20230387399
    Abstract: A method of preparing a lithium secondary battery includes: (1) mixing a small particle lithium composite transition metal oxide having an average particle diameter (D50) of less than 7 ?m with a boron-containing raw material and performing a heat treatment, mixing a large particle lithium composite transition metal oxide having an average particle diameter (D50) of 8 ?m or more with a cobalt-containing raw material and a boron-containing raw material and performing a heat treatment, mixing the first positive electrode active material and the second positive electrode active material to prepare a positive electrode material having a bimodal particle diameter distribution, preparing a positive electrode by coating the positive electrode material on a positive electrode collector, and assembling the positive electrode, a negative electrode including a silicon-based negative electrode active material, and a separator.
    Type: Application
    Filed: October 22, 2021
    Publication date: November 30, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Hak Yoon Kim, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20230387413
    Abstract: A lithium secondary battery and a method of manufacturing the lithium secondary battery are provided. In the lithium secondary battery, a positive electrode additive represented by Formula 1 as an irreversible additive is included in a positive electrode mixture layer, and a ratio (CC/DC) of an initial charge capacity (CC) to an initial discharge capacity (DC) is adjusted within a specific range, thereby reducing the amount of oxygen gas generated in the charging/discharging of the lithium secondary battery, and at the same time, inhibiting self-discharging and improving an operating voltage by improving the open circuit voltage of the battery in initial activation and/or subsequent high-temperature storage. The lithium secondary battery including the same can be effectively used as a power source for mid-to-large devices such as electric vehicles.
    Type: Application
    Filed: June 2, 2022
    Publication date: November 30, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Wang Mo Jung, Hye Hyeon Kim, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Jong Wook Heo
  • Patent number: 11831006
    Abstract: An electrode includes an electrode active material, wherein the electrode active material layer includes an electrode active material, polyvinylidene fluoride, and a conductive agent, wherein the conductive agent includes a carbon nanotube structure in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other, and the carbon nanotube structure is included in an amount of 0.01 wt % to 0.5 wt % in the electrode active material layer. A secondary battery including the same, and a method of preparing the electrode are also provided.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 28, 2023
    Inventors: Seul Ki Kim, Tae Gon Kim, Je Young Kim, Wang Mo Jung, Jung Woo Yoo, Sang Wook Lee
  • Publication number: 20230378456
    Abstract: Provided are a positive electrode active material comprising at least one secondary particle comprising an agglomerate of primary macro particles, a method for preparing the same and a lithium secondary battery comprising the same. Further provided is a positive electrode active material comprising secondary particles with improved resistance by simultaneously growing the average particle size (D50) and the crystal size of the primary macro particles. Thus, it is possible to provide a nickel-based positive electrode active material with high press strength, long life and good gas performance.
    Type: Application
    Filed: October 29, 2021
    Publication date: November 23, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Ji-Hye Kim, Byung-Chun Park, Jung-Min Han, Jong-Wook Heo, Wang-Mo Jung
  • Publication number: 20230378433
    Abstract: The present technology provides a positive electrode for a lithium secondary battery and a lithium secondary battery including the same. In the positive electrode, a positive electrode additive represented by Formula 1 is contained in a positive electrode mixture layer, and specific X-ray diffraction (XRD) and/or extended X-ray absorption fine-structure (EXAFS) peak(s) are controlled for cobalt remaining in the positive electrode mixture layer after initial charging to SOC 100% to have a specific oxidation number, thereby reducing side reactions caused by the irreversible additive, that is, the positive electrode additive, and reducing the amount of gas such as oxygen generated during charging/discharging. Therefore, the lithium secondary battery has an excellent effect of improving battery safety and electrical performance.
    Type: Application
    Filed: June 2, 2022
    Publication date: November 23, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Wang Mo Jung, Hye Hyeon Kim, Tae Gu Yoo, Jin Tae Hwang, Hae Jung Jung, Jong Wook Heo
  • Publication number: 20230369601
    Abstract: An electrode and a secondary battery including the same are disclosed herein. In some embodiments, an electrode includes an electrode active material layer, wherein the electrode active material layer includes an electrode active material, a conductive agent, and sodium dodecyl sulfate (SDS), wherein the conductive agent includes carbon nanotube structures wherein 2 to 5,000 single-walled carbon nanotube units are bonded to each other, and a weight ratio of the carbon nanotube structure to the SDS is in a range of 1:3 to 1:30.
    Type: Application
    Filed: March 18, 2022
    Publication date: November 16, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Tae Gon Kim, Wang Mo Jung, Min Kwak
  • Publication number: 20230352654
    Abstract: A method of preparing a positive electrode active material is disclosed herein. The method may ensure surface and coating uniformity of first and second lithium transition metal oxides in the positive electrode active material. In some embodiments, the method includes washing a mixture of a first lithium transition metal oxide having a first Brunauer-Emmett-Teller (BET) specific surface area and a second lithium transition metal oxide having a second BET specific surface area with a washing solution, an amount of the washing solution based on 100 parts by weight of the mixture satisfies Equation 1: 5,000×(x1w1+x2w2)?the amount of the washing solution ?15,000×(x1w1+x2w2), x1 and x2 are the first and second BET specific surface areas, respectively, and w1 and w2 are weight ratios of the first and second lithium transition metal oxides based on a total weight of the mixture, respectively.
    Type: Application
    Filed: December 23, 2021
    Publication date: November 2, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dae Jin Lee, Sang Min Park, Min Kwak, Wang Mo Jung, Gi Beom Han, Sang Wook Lee, Eun Sol Lho, Joong Yeop Do, Kang Joon Park
  • Publication number: 20230348294
    Abstract: A positive electrode active material, a lithium secondary battery including the same, and a method of making the same are disclosed herein. In some embodiments, a positive electrode active material includes secondary particles, each secondary particle comprising an agglomerate of primary macro particles, wherein an average particle size (D50) of the primary macro particles is 1.5 ?m or more, wherein a part of a surface of each secondary particle is coated with a cobalt compound and an aluminum compound, an average particle size (D50) of the secondary particles is 3 to 10 ?m, and wherein the primary macro particles comprises a nickel-based lithium transition metal oxide. It is possible to improve the electrical and chemical properties by partial coating of the secondary particles with cobalt and aluminum on the surface. It is possible to provide a nickel-based positive electrode active material with improved stability at high temperature and high voltage.
    Type: Application
    Filed: November 8, 2021
    Publication date: November 2, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Jong-Wook Heo, Ji-Hye Kim, Tae-Gu Yoo, Wang-Mo Jung, Hae-Jung Jung, Chi-Ho Jo
  • Publication number: 20230352678
    Abstract: A positive electrode active material in the form of a single particle and a lithium secondary battery containing the positive electrode active material thereof are provided. The positive electrode active material has a nickel-based lithium composite metal oxide single particle. The single particle has a plurality of crystal grains. An average particle size (D50) of the single particle is from 3.5 ?m to 8 ?m. The single particle includes a metal doped in the crystal lattice thereof.
    Type: Application
    Filed: June 27, 2023
    Publication date: November 2, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Tae Gu Yoo, Younguk Park, Jintae Hwang, Wang Mo Jung, Sungbin Park
  • Publication number: 20230339777
    Abstract: A positive electrode active material comprising at least one secondary particle comprising an agglomerate of primary macro particles, a method for preparing the same and a lithium secondary battery comprising the same. According to an embodiment of the present disclosure, it is possible to improve the electrical conductivity of the positive electrode active material surface by coating a conductive carbon material on the surface of the secondary particle. Accordingly, it is possible to provide a nickel-based positive electrode active material with improved life performance by minimizing conductive network losses after cycles.
    Type: Application
    Filed: November 26, 2021
    Publication date: October 26, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Joong-Yeop Do, Eun-Sol Lho, Kang-Joon Park, Gi-Beom Han, Min Kwak, Sang-Min Park, Dae-Jin Lee, Sang-Wook Lee, Wang-Mo Jung
  • Patent number: 11799066
    Abstract: A positive electrode active material includes a lithium transition metal oxide, which is doped with doping element M2, wherein M2 is at least one selected from the group consisting of Al, Ti, Mg, Zr, W, Y, Sr, Co, F, Si, Na, Cu, Fe, Ca, S, and B, and contains nickel in an amount of 60 mol % or more based on a total number of moles of transition metals excluding lithium, wherein the lithium transition metal oxide has a single particle form, and includes a center portion having a layered structure and a surface portion having a rock-salt structure, and the doping element M2 is included in an amount of 3,580 ppm to 7,620 ppm based on a total weight of the positive electrode active material.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 24, 2023
    Inventors: Tae Gu Yoo, Young Uk Park, Jin Tae Hwang, Wang Mo Jung, Sung Bin Park
  • Patent number: 11799081
    Abstract: A positive electrode material including a first positive electrode active material represented by Formula 1 and a second positive electrode active material represented by Formula 2, a positive electrode including the same, and a lithium secondary battery including the positive electrode are provided. The positive electrode material has a bimodal particle size distribution including large diameter particles and small diameter particles, and the difference in average particle diameter (D50) between the large diameter particles and the small diameter particles is 3 ?m or greater.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 24, 2023
    Inventors: Dong Hun Lee, Wang Mo Jung, Sung Bin Park, Ji Hye Kim, Dong Hwi Kim, Hyung Man Cho, Jung Min Han
  • Publication number: 20230335708
    Abstract: A solid electrolyte film for sulfide-based all-solid-state batteries, and more particularly a composition of a solid electrolyte, a binder, and a solvent used to manufacture a solid electrolyte film for sulfide-based all-solid-state batteries that is thin and has high ion conductivity. In particular, a solid electrolyte film composition for sulfide-based all-solid-state batteries including a solvent having a dielectric constant of x (1.5<x<3.0). The thickness of a solid electrolyte film for sulfide-based all-solid-state batteries manufactured using the solid electrolyte film composition is 60 µm or less, and the solid electrolyte film is capable of being stably used for at least 1000 hours or more, and up to 2000 hours, based on the evaluation of Li plating and stripping.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Applicants: LG ENERGY SOLUTION, LTD., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Darren H.S. TAN, Zheng CHEN, Ying Shirley MENG, Chi Ho JO, Wang Mo JUNG
  • Publication number: 20230331583
    Abstract: Provided are a sacrificial positive electrode material with a reduced gas generation amount and a method of preparing the same. The method includes calcinating a raw material mixture of lithium oxide (Li2O) and cobalt oxide (CoO) to prepare a lithium cobalt metal oxide, wherein the lithium oxide (Li2O) has an average particle size (D50) of 50 µm or less, and the resulting sacrificial positive electrode material has an electrical conductivity of 1 × 10-4 S/cm or more. The method of preparing a sacrificial positive electrode material can reduce the generation of gas, particularly, oxygen (O2) gas, in an electrode assembly during charging of a battery by adjusting the electrical conductivity of the sacrificial positive electrode material within a specific range using lithium oxide that satisfies a specific size, and thus the stability and lifespan of the battery including the same can be effectively enhanced.
    Type: Application
    Filed: February 18, 2022
    Publication date: October 19, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Tae Gu Yoo, Wang Mo Jung, Chi Ho Jo, Ji Hye Kim, Hae Jung Jung, Jong Wook Heo
  • Publication number: 20230327107
    Abstract: A positive electrode active material for a secondary battery includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), and a glassy coating layer formed on surfaces of particles of the lithium composite transition metal oxide, wherein, in the lithium composite transition metal oxide, an amount of the nickel (Ni) in a total amount of transition metals is 60 mol % or more, and an amount of the manganese (Mn) is greater than an amount of the cobalt (Co), and the glassy coating layer includes a glassy compound represented by Formula 1. LiaM1bOc??[Formula 1] wherein, M1 is at least one selected from the group consisting of boron (B), aluminum (Al), silicon (Si), titanium (Ti), and phosphorus (P), and 1?a?4, 1?b?8, and 1?c?20.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Min Suk Kang, Sang Wook Lee, Wang Mo Jung, Dong Hun Lee, Hye Lim Jeon, Eun Sol Lho
  • Publication number: 20230317930
    Abstract: A positive electrode active material includes a core including a first lithium complex metal oxide, and a shell located surrounding the core and including a second lithium complex metal oxide, and further includes a buffer layer located between the core and the shell. The buffer layer includes a pore, and a three-dimensional network structure of a third lithium complex metal oxide which is connecting the core and the shell. Accordingly, the positive electrode active material is capable of enhancing an output property and a life property by minimizing destruction of the active material caused by a rolling process during the electrode preparation, maximizing reactivity with an electrolyte liquid, and by the particles that form the shell having a crystal structure with orientation facilitating lithium ion intercalation and deintercalation.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Applicant: LG Chem, Ltd.
    Inventors: Byung Chun Park, Hong Kyu Park, Wang Mo Jung, Seong Hoon Kang