Patents by Inventor Wang Mo Jung

Wang Mo Jung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11522169
    Abstract: Disclosed herein are a method of manufacturing a sulfide-based all-solid-state battery, and a sulfide-based all-solid-state battery manufactured thereby, wherein the battery includes a surface heat-treated positive electrode active material, which is simply performed by heating a positive electrode active material at 400° C. to 600° C. in an inert gas state, as a low-cost method of uniformly treating the surface of a positive electrode active material such that the positive electrode active material does not react with a sulfide-based solid electrolyte.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: December 6, 2022
    Assignees: The Regents of the University of California
    Inventors: Chi Ho Jo, Wang Mo Jung, Hyuk In Moon, Ying Shirley Meng
  • Patent number: 11515522
    Abstract: A positive electrode active material for a secondary battery includes a first positive electrode active material and a second positive electrode active material, wherein an average particle diameter (D50) of the first positive electrode active material is twice or more than an average particle diameter (D50) of the second positive electrode active material, and the second positive electrode active material has a crystallite size of 200 nm or more.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: November 29, 2022
    Inventors: Dong Hun Lee, Young Uk Park, Wang Mo Jung, Sung Bin Park, Dong Hwi Kim, Tae Gu Yoo
  • Patent number: 11508961
    Abstract: A method of preparing a positive electrode active material for a secondary battery includes preparing a positive electrode active material precursor including nickel (Ni), cobalt (Co), and at least one selected from the group consisting of manganese (Mn) and aluminum (Al); and forming a lithium composite transition metal oxide by mixing the positive electrode active material precursor and a lithium source and performing calcination, wherein the positive electrode active material precursor includes nickel (Ni) in an amount of 60 mol % or more out of the entire metal element, and a molar ratio (Li/M) of lithium (Li) of the lithium source to the entire metal element (M) of the positive electrode active material precursor is greater than 1.1.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 22, 2022
    Inventors: Sung Bin Park, Wang Mo Jung, Dong Hun Lee, Ji Hye Kim, Dong Hwi Kim, Hyung Man Cho, Jung Min Han
  • Publication number: 20220336806
    Abstract: The present invention relates to a positive electrode material for a secondary battery, the positive electrode material including a first positive electrode active material and a second positive electrode active material, the first positive electrode active material and the second positive electrode active material being single particle types and lithium composite transition metal oxides including nickel, cobalt, and manganese and having a nickel content accounting for 60 mol % or more of total metals except for lithium, wherein the first positive electrode active material has a mean particle diameter (D50) of 3 ?m or less and a molar ratio (Li/M) of lithium to the metals (M) except for lithium of 1.10 to 1.20, and the second positive electrode active material has a mean particle diameter (D50) of greater than 3 ?m and a molar ratio (Li/M) of lithium to the metals (M) except for lithium of 1.00 to 1.13.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 20, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Eun Sol Lho, Sang Min Park, Sung Bin Park, Seul Ki Kim, Wen Xiu Wang, Wang Mo Jung
  • Patent number: 11476466
    Abstract: There are provided a method of preparing an irreversible additive in which a content of a Li-based by-product such as unreacted lithium oxide generated in a process of preparing lithium nickel-based oxide is decreased, which may significantly reduce gelation of a composition including the irreversible additive, a cathode material including the irreversible additive prepared by the same, and a lithium secondary battery including the cathode material.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 18, 2022
    Inventors: Hyelim Jeon, Seul Ki Kim, Sang Wook Lee, Wang Mo Jung, Minsuk Kang, Sora Baek, Eunsol Lho
  • Patent number: 11476456
    Abstract: A lithium cobalt-based positive electrode active material is provided. The lithium cobalt-based positive electrode active material includes a core portion including a lithium cobalt-based oxide represented by Formula 1 and a shell portion including a lithium cobalt-based oxide represented by Formula 2, wherein the lithium cobalt-based positive electrode active material includes 2500 ppm or more, preferably 3000 ppm or more of a doping element M based on the total weight of the positive electrode active material. An inflection point does not appear in a voltage profile measured during charging/discharging a secondary battery including the lithium cobalt-based positive electrode active material.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 18, 2022
    Inventors: Chi Ho Jo, Min Kyu You, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Publication number: 20220310984
    Abstract: The present invention relates to an electrode of a double-layer structure including a different type of particulate active material having a different average particle diameter, and a secondary battery including the same, and according to the present invention, the mechanical strength and stability of the electrode increases, and the secondary battery to which they are applied exhibits excellent discharge capacity.
    Type: Application
    Filed: July 29, 2020
    Publication date: September 29, 2022
    Applicant: LG CHEM, LTD.
    Inventors: Dae Jin LEE, Dong Hwi KIM, Jin Tae HWANG, Hyeong Il KIM, Seul Ki CHAE, Wang Mo JUNG, Dong Hun LEE
  • Patent number: 11450846
    Abstract: The present disclosure relates to a positive electrode material which includes a first positive electrode active material, and a second positive electrode active material in the form of a single particle, wherein an amount of lithium impurities on a surface of the second positive electrode active material is 0.14 wt % or less based on a total weight of the second positive electrode active material, and at least one of nickel, cobalt, and manganese included in the second positive electrode active material has a concentration gradient gradually changing from the center of the particle to a surface thereof, a method of preparing the positive electrode material, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode material.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 20, 2022
    Inventors: Young Uk Park, Tae Gu Yoo, Jin Tae Hwang, Wang Mo Jung, Sung Bin Park
  • Patent number: 11424447
    Abstract: A positive electrode active material for a lithium secondary battery is provided having a secondary particle formed by agglomerating a plurality of polycrystalline primary particles including a lithium composite metal oxide of Chemical Formula 1, wherein an average crystallite size of the primary particle is 180 to 400 nm, a particle size D50 of the primary particle is 1.5 to 3?m, and the primary particle is doped or surface-coated with at least one element M selected from the group consisting Al, Ti, Mg, Zr, Y, Sr, and B in an amount of 3,800 to 7,000 ppm: Lia(NixMnyCozAw)O2+b ??[Chemical Formula 1].
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: August 23, 2022
    Inventors: Younguk Park, Tae Gu Yoo, Jintae Hwang, Wang Mo Jung, Sungbin Park
  • Publication number: 20220246928
    Abstract: A surface of a LiCoO2-based positive electrode active material to have a rock salt crystal structure is provided. Specifically, a positive electrode active material for a lithium rechargeable battery is provided, including: a core particle containing lithium cobalt oxide doped with aluminum (Al); and a coating layer positioned on a surface of the core particle and containing a cobalt (Co)-based compound having a rock salt crystal structure. A method of producing the positive electrode active material is also provided using a solid-phase method. The positive electrode active material can be applied to a positive electrode, lithium rechargeable battery, battery module, battery pack, and the like.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Chi Ho Jo, Hyuck Hur, Seul Ki Kim, Wang Mo Jung, Gi Beom Han
  • Publication number: 20220246929
    Abstract: A surface of a LiCoO2-based positive electrode active material to have a rock salt crystal structure is provided. Specifically, a positive electrode active material for a lithium rechargeable battery is provided, including: a core particle containing lithium cobalt oxide doped with aluminum (Al); and a coating layer positioned on a surface of the core particle and containing a cobalt (Co)-based compound having a rock salt crystal structure. A method of producing the positive electrode active material is also provided using a solid-phase method. The positive electrode active material can be applied to a positive electrode, lithium rechargeable battery, battery module, battery pack, and the like.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 4, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Chi Ho Jo, Hyuck Hur, Seul Ki Kim, Wang Mo Jung, Gi Beom Han
  • Publication number: 20220246925
    Abstract: A method of preparing a positive electrode active material for a secondary battery, is disclosed herein. In some embodiments, a method includes mixing a positive electrode active material precursor, a lithium source material, a first firing additive, a second firing additive, and a third firing additive a to form a mixture, wherein the positive electrode active material precursor contains nickel, cobalt, and manganese and has a nickel content of 60 mol % or more relative to a total molar amount of metals in the positive electrode active material precursor, and performing primary firing of the mixture to form a lithium transition metal oxide, wherein the first firing additive is a lithium-containing compound, the second firing additive is a carbonate ion-containing compound, and the third firing additive is a boron-containing compound.
    Type: Application
    Filed: August 5, 2020
    Publication date: August 4, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Eun Sol Lho, Sang Min Park, Wang Mo Jung, Sung Bin Park, Seul Ki Kim, Wen Xiu Wang
  • Patent number: 11404693
    Abstract: The present disclosure relates to a cathode additive, a method for preparing the same, and a cathode and a lithium secondary battery including the same. More specifically, one embodiment of the present disclosure provides a cathode additive that can offset an irreversible capacity imbalance, and increase the initial charge capacity of a cathode.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: August 2, 2022
    Inventors: Ji Hye Kim, Byungchun Park, Jungmin Han, Wang Mo Jung
  • Patent number: 11398623
    Abstract: The present disclosure provides a preparing method of a positive electrode additive for a lithium secondary battery capable of reducing the amount of Li-based byproduct and unreacted lithium oxide generated in a preparing process, thereby significantly reducing the amount of gas generated when the electrode is operated.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 26, 2022
    Inventors: Eunsol Lho, Hyelim Jeon, Donghun Lee, Sang Wook Lee, Wang Mo Jung, Minsuk Kang, Sora Baek
  • Publication number: 20220223861
    Abstract: A positive electrode for a secondary battery in which a positive electrode mixture including a positive electrode active material is formed on at least one surface of a current collector is provided. The positive electrode includes a lithium by-product so as to satisfy the following Equation 1 based on the total weight of the positive electrode mixture. 4000 A - 2000 ? B ? ( ppm ) [ Equation ? ? 1 ] wherein in the Equation 1, A is the molar content of Ni when the total mole of transition metal contained in the positive electrode active material is 1, and B is the content of lithium by-product, when A is 0.5 or less, the minimum value of B is 6000 ppm. The positive electrode also has a harness at which cracks occur in a measuring rod of 2 pi (Ø) or more.
    Type: Application
    Filed: December 23, 2020
    Publication date: July 14, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Hakyoon Kim, Gi Beom Han, Sang Wook Lee, Sora Baek, Jungmin Han, Wang Mo Jung
  • Patent number: 11377367
    Abstract: Provided is a cobalt precursor for preparing a lithium cobalt oxide of a layered structure which is included in a positive electrode active material, wherein the cobalt precursor is cobalt oxyhydroxide (CoM?OOH) doped with, as dopants, magnesium (Mg) and M? different from the magnesium.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 5, 2022
    Inventors: Chi Ho Jo, Sungbin Park, Jiyoung Park, Bo Ram Lee, Hyuck Hur, Wang Mo Jung
  • Patent number: 11367871
    Abstract: The present invention provides a positive electrode active material for a secondary battery which includes a lithium transition metal oxide, wherein the positive electrode active material has three peaks in a differential graph (ERC curve) obtained by differentiating a pH value against an amount of acid (HCl) added, which is obtained by pH titration of 10 g of the lithium transition metal oxide using 0.5 M HCl, wherein a y-axis (dpH/dml) value of a first peak at the smallest x-axis value among the three peaks is ?1.0 or less.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: June 21, 2022
    Inventors: In Seong Ju, Wang Mo Jung, Byung Chun Park, Joo Hong Jin, Ju Kyung Shin, Ji Hye Kim, So Ra Baek, Tae Gu Yoo
  • Publication number: 20220185691
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a lithium transition metal oxide including nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of aluminum (Al), manganese (Mn), and a combination thereof. The lithium transition metal oxide is characterized in that the content of nickel (Ni) in the total transition metal elements is 80 mol % or more, and the cation mixing ratio of Ni cations in a lithium layer in the lithium transition metal oxide structure is 1.1% or less.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 16, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Patent number: 11342557
    Abstract: A surface of a LiCoO2-based positive electrode active material to have a rock salt crystal structure is provided. Specifically, a positive electrode active material for a lithium rechargeable battery is provided, including: a core particle containing lithium cobalt oxide doped with aluminum (Al); and a coating layer positioned on a surface of the core particle and containing a cobalt(Co)-based compound having a rock salt crystal structure. A method of producing the positive electrode active material is also provided using a solid-phase method. The positive electrode active material can be applied to a positive electrode, lithium rechargeable battery, battery module, battery pack, and the like.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: May 24, 2022
    Inventors: Chi Ho Jo, Hyuck Hur, Seul Ki Kim, Wang Mo Jung, Gi Beom Han
  • Publication number: 20220158192
    Abstract: A negative electrode includes a negative electrode active material layer, wherein the negative electrode active material layer includes a negative electrode active material and a conductive material. The negative electrode active material includes SiOx (0?x<2) particles and the conductive material includes secondary particles in which a portion of one graphene sheet is connected to a portion of an adjacent graphene sheet and a carbon nanotube structure in which 2 to 5,000 single-walled carbon nanotube units are coupled to each other, wherein the oxygen content of the secondary particles is 1 wt % to 10 wt % based on the total weight of the secondary particles, the specific surface area of the secondary particles measured by a nitrogen adsorption BET method is 500 m2/g to 1100 m2/g, and the carbon nanotube structure is included in the negative electrode active material layer in an amount of an 0.01 wt % to 1.0 wt %.
    Type: Application
    Filed: March 9, 2020
    Publication date: May 19, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Tae Gon Kim, Ki Won Sung, Wang Mo Jung, Sin Young Park, Dae Jin Lee, Bo Ram Lee, Hak Yoon Kim