Patents by Inventor Wanli Chi

Wanli Chi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210011303
    Abstract: Techniques disclosed herein relate to a near-eye display system. One example of an optical device of a near-eye display includes a substrate and holographic grating conformally coupled to a surface of the substrate. The substrate is transparent to visible light and infrared light and is configured to be placed in front of an eye of a user of the near-eye display. A refractive index modulation of the holographic grating is apodized in a surface-normal direction of the substrate to reduce optical artifacts in the visible light.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 14, 2021
    Inventors: Gregory Olegovic ANDREEV, Gang LI, Erik SHIPTON, Yingfei JIANG, Wanli CHI, Andrew John OUDERKIRK
  • Patent number: 10890770
    Abstract: A waveguide, e.g. an image-replicating waveguide, is provided. The waveguide includes a substrate having two outer surfaces, for propagating a beam of image light in the substrate by reflecting the beam from the outer surfaces. A diffraction grating is supported by the substrate and configured for diffracting the impinging beam. A partial reflector is disposed in the substrate between and parallel to the first and second surfaces. The partial reflector is configured for splitting the impinging beam, increasing the number of beam portions in the waveguide, thereby improving output pupil density.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: January 12, 2021
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Wanli Chi, Matthieu Charles Raoul Leibovici, Austin Lane, Kavous Jorabchi
  • Patent number: 10877205
    Abstract: A waveguide includes an input area, a multi-layered substrate, and an output area. The multi-layered substrate includes a plurality of layers of at least a substrate and at least one partially reflective layers. The input area in-couples light in a first band into the waveguide. The one or more partially reflective layers are partially reflective to light in the first band. Each of the one or more partially reflective layers are located between respective layers of the plurality of layers of the substrate. The output area out-couples light from the waveguide. The pupil replication density of the out-coupled light is based in part on a number of the one or more partially reflective layers and respective locations of the one or more partially reflective layers in the waveguide.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: December 29, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Maxwell Parsons, Giuseppe Calafiore, Wanli Chi
  • Patent number: 10877280
    Abstract: A near-eye display includes a light source assembly, a first waveguide, an output waveguide, and a controller. The light source assembly emits image light including light within a first band and a second band. The first waveguide receives the image light, expands the received image light in at least one dimension, and outputs an image light. The output waveguide includes an output area and a plurality of input areas. Each input area receives the image light from the first waveguide. The output waveguide includes a holographic Bragg grating and the output waveguide expands the image light at least along two dimensions to form an expanded image light, and outputs the expanded image light toward an eyebox. The controller controls the scanning of the light source assembly and the first waveguide.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 29, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Hee Yoon Lee, Wanli Chi, Pasi Saarikko
  • Patent number: 10861415
    Abstract: A wearable display device and a calibration method for the wearable display device are provided. The wearable display device or its component(s) may exhibit optical throughput dependent on beam angle or beam coordinate at the eyebox. The linear or angular dependencies of throughput may be accounted for when generating an image to be displayed, to lessen or offset these dependencies during operation of the wearable display.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: December 8, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Yijing Fu, Pasi Saarikko, Hee Yoon Lee, Wanli Chi
  • Publication number: 20200348514
    Abstract: A waveguide is provided for conveying image light. The waveguide includes an input port for receiving a first beam of image light carrying an image in a wavelength band. A first diffraction grating of the waveguide includes a plurality of volume Bragg gratings (VBGs) configured to expand the first beam along a first axis and to redirect the first beam towards a second diffraction grating of the waveguide. The second diffraction grating includes a plurality of VBGs configured to receive the first beam from the first diffraction grating and to out-couple different portions of the first wavelength band of the first beam along a second axis, thereby expanding the first beam along the second axis for observation of the image by a user.
    Type: Application
    Filed: June 22, 2020
    Publication date: November 5, 2020
    Inventors: Wanli Chi, Hee Yoon Lee, Pasi Saarikko
  • Publication number: 20200310122
    Abstract: A light source includes a first set of source elements and a second set of source elements. A respective set of source elements is disposed on a respective substrate and electrically coupled to a respective set of circuit pads formed on a respective top surface of the respective substrate by respective bond wires. At least a portion of the respective top surfaces face each other and are spaced apart from each other to accommodate at least some of the first set of source elements, at least some of the second set of source elements, and at least some of the bond wires. The display device that includes a light source configured to output image light, an optical assembly configured to collimate the image light, a scanning assembly configured to steer the image light, and an output device configured to output the image light for displaying images is also disclosed.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 1, 2020
    Inventors: Wanli CHI, Chadwick Brian MARTIN, Scott Charles MCELDOWNEY, Maxwell PARSONS, Stephen James MCNALLY, Daniel Guenther GREIF
  • Publication number: 20200292851
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10769975
    Abstract: A waveguide display includes a source assembly, an output waveguide, and a controller. The source assembly includes a light source and an optics system. The light source includes source elements arranged in a 1D or 2D array that emit image light. The optics system includes a scanning mirror assembly that scans the image light to particular locations based on scanning instructions. The output waveguide receives the scanned image light from the scanning mirror assembly and outputs an expanded image light. In some embodiments, the waveguide display includes a source waveguide and the 1D array of source elements. The source waveguide receives a conditioned image light from the source assembly. The controller generates the scanning instructions and provides the scanning instructions to the scanning mirror assembly. In some embodiments, the controller provides the scanning instructions to an actuator assembly of the source waveguide.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 8, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Wanli Chi, Pasi Saarikko, Hee Yoon Lee
  • Publication number: 20200278538
    Abstract: Disclosed herein are systems and methods of reducing distortion in an image displayed on a near-eye display. Described herein is a display system including a light assembly configured to generate source light for a display image, a distortion correcting optics assembly, and a mirror scanning system configured to receive pre-distorted and collimated light and reflect and scan the pre-distorted and collimated light to provide an image on an image plane. The distortion correcting optics assembly delivers pre-distorted and collimated light to the mirror scanning system, the mirror scanning system is configured to undistort the pre-distorted light and transmit an undistorted image to a display.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Byron TAYLOR, Wanli CHI
  • Publication number: 20200257065
    Abstract: An optical device (e.g., a pupil expander) includes a waveguide with a slanted facet. The optical device includes a reflector on the slanted facet and a prism, or a grating at the slanted facet. The prism or the grating compensates for the dispersion of an image light from a display, which reduces smearing of displayed images. The waveguide can be configured for pupil replication in one-dimension or two-dimensions.
    Type: Application
    Filed: November 14, 2019
    Publication date: August 13, 2020
    Inventors: Wanli CHI, Hee Yoon LEE
  • Patent number: 10725291
    Abstract: A waveguide is provided for conveying image light. The waveguide includes an input port for receiving a first beam of image light carrying an image in a wavelength band. A first diffraction grating of the waveguide includes a plurality of volume Bragg gratings (VBGs) configured to expand the first beam along a first axis and to redirect the first beam towards a second diffraction grating of the waveguide. The second diffraction grating includes a plurality of VBGs configured to receive the first beam from the first diffraction grating and to out-couple different portions of the first wavelength band of the first beam along a second axis, thereby expanding the first beam along the second axis for observation of the image by a user.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: July 28, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Wanli Chi, Hee Yoon Lee, Pasi Saarikko
  • Publication number: 20200225479
    Abstract: A waveguide display includes a substrate transparent to visible light, a coupler configured to couple display light into the substrate such that the display light propagates within the substrate through total internal reflection, a first multiplexed volume Bragg grating (VBG) on the substrate, and a second multiplexed VBG on the substrate. The second multiplexed VBG overlaps with the first multiplexed VBG in at least a see-through region of the waveguide display. The first multiplexed VBG is configured to diffract the display light to two or more regions of the second multiplexed VBG, and the second multiplexed VBG is configured to diffract the display light to two or more regions of an eyebox of the waveguide display.
    Type: Application
    Filed: December 24, 2019
    Publication date: July 16, 2020
    Inventors: Wanli CHI, Hee Yoon LEE, Pasi SAARIKKO
  • Patent number: 10705353
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 7, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Patent number: 10705341
    Abstract: A waveguide display includes a source assembly, an output waveguide, and a controller. The source assembly includes a light source and an optics system. The light source includes source elements arranged in a 1D or 2D array that emit image light that is temporally incoherent and spatially coherent. In some embodiments, the light source includes an array of superluminous LEDs, an array of laser diodes, an array of resonant cavity LEDs, or some combination thereof. The optics system includes a scanning assembly that scans the image light to particular locations based on scanning instructions. The output waveguide receives the scanned image light from the scanning assembly and outputs an expanded image light. The controller generates the scanning instructions and provides the scanning instructions to the light source.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 7, 2020
    Assignee: FACEBOOK TECHNOLOGIES, LLC
    Inventors: Maxwell Parsons, Wanli Chi, Yijing Fu, Hee Yoon Lee, James Ronald Bonar, Pasi Saarikko, Scott Charles McEldowney
  • Publication number: 20200201034
    Abstract: An eye-tracker for determining a position of the pupil of an eye includes a detector and an optical element. The optical element is configured to receive first light reflected off the eye and reflectively diffract a portion of the first light that has a first polarization toward the detector. The optical element is also configured to transmit second light. The second light includes a second portion of the first light that has a second polarization that is different from the first polarization. A head-mounted display device that includes a display system and the eye-tracker is also disclosed. A method for determining the location of a pupil of an eye is also disclosed herein.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 25, 2020
    Inventors: Ying GENG, Babak AMIRSOLAIMANI, Scott Charles MCELDOWNEY, Wanli CHI, Yusufu Njoni Bamaxam SULAI
  • Patent number: 10690919
    Abstract: A waveguide display includes a light source, a scanning mirror assembly, an output waveguide, and a controller. The light source emits image light. The scanning mirror assembly scans the image light as scanned image light to particular locations in accordance with scanning instructions. The output waveguide includes an input area and an output area. The output waveguide receives the scanned image light emitted from the scanning mirror assembly at the input area, and output expanded image light from a portion of the output area, the location of the portion of the output area based in part on a direction of the scanned image light output from the scanning mirror assembly. The controller generates the scanning instructions and provides the scanning instructions to the scanning mirror assembly.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: June 23, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Yijing Fu, Wanli Chi, Pasi Saarikko, Xinqiao Liu, Hee Yoon Lee, Maxwell Parsons
  • Publication number: 20200192152
    Abstract: An optical system is provided. The optical system includes an electronic display, an adaptive lens assembly, and an eye tracking device. The electronic display displays a virtual scene for a user of the optical system; the adaptive lens assembly is optically coupled to the electronic display between the electronic display and eyes of the user; and the eye tracking device provides eye tracking information of the eyes of the user. The adaptive lens assembly includes a plurality of adjustable liquid crystal (LC) lenses arranged in an array, and the adjustable LC lenses are activated individually based on the eye tracking information.
    Type: Application
    Filed: January 29, 2019
    Publication date: June 18, 2020
    Inventors: Afsoon JAMALI, Wanli CHI, Douglas LANMAN
  • Publication number: 20200192130
    Abstract: A pupil-replicating waveguide suitable for operation with a coherent light source is disclosed. A waveguide body has opposed surfaces for guiding a beam of image light. An out-coupling element is disposed in an optical path of the beam for out-coupling portions of the beam at a plurality of spaced apart locations along the optical path. Electrodes are coupled to at least a portion of the waveguide body for modulating an optical path length of the optical path of the beam to create time-varying phase delays between the portions of the beam out-coupled by the out-coupling element.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 18, 2020
    Inventors: Andrew Maimone, Andrew Ouderkirk, Hee Yoon Lee, Ningfeng Huang, Maxwell Parsons, Scott Charles McEldowney, Babak Amirsolaimani, Pasi Saarikko, Wanli Chi, Giuseppe Calafiore, Alexander Koshelev, Barry David Silverstein, Lu Lu, Wai Sze Tiffany Lam, Gang Li, Stephan Lutgen, Francois Olivier, David Massoubre
  • Publication number: 20200158928
    Abstract: A waveguide, e.g. an image-replicating waveguide, is provided. The waveguide includes a substrate having two outer surfaces, for propagating a beam of image light in the substrate by reflecting the beam from the outer surfaces. A diffraction grating is supported by the substrate and configured for diffracting the impinging beam. A partial reflector is disposed in the substrate between and parallel to the first and second surfaces. The partial reflector is configured for splitting the impinging beam, increasing the number of beam portions in the waveguide, thereby improving output pupil density.
    Type: Application
    Filed: November 15, 2018
    Publication date: May 21, 2020
    Inventors: Wanli Chi, Matthieu Charles Raoul Leibovici, Austin Lane, Kavous Jorabchi