Patents by Inventor Wanxing Xu

Wanxing Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250087494
    Abstract: Exemplary semiconductor processing methods may include flowing an etchant precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region. The substrate may define an exposed region of a metal-containing hardmask material and an exposed region of a material characterized by a dielectric constant of less than or about 4.0. The methods may include contacting the substrate with the etchant precursor. The methods may include removing at least a portion of the metal-containing hardmask material.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 13, 2025
    Applicant: Applied Materials, Inc.
    Inventors: Baiwei Wang, Rohan Puligoru Reddy, Xiaolin C. Chen, Wanxing Xu, Zhenjiang Cui, Anchuan Wang
  • Publication number: 20240258116
    Abstract: Exemplary semiconductor processing methods may include flowing an etchant precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region. The substrate may define an exposed region of a titanium-containing material. The methods may include contacting the substrate with the etchant precursor. The methods may include removing at least a portion of the titanium-containing material.
    Type: Application
    Filed: January 26, 2023
    Publication date: August 1, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Baiwei Wang, Wanxing Xu, Lisa J. Enman, Aaron Dangerfield, Rohan Puligoru Reddy, Xiaolin C. Chen, Mikhail Korolik, Bhaskar Jyoti Bhuyan, Zhenjiang Cui, Anchuan Wang
  • Publication number: 20240047196
    Abstract: A selective thermal atomic layer deposition (ALD) process is disclosed. The process may comprise loading a substrate comprising a dielectric material, and a metal, into a reactor. The substrate may be reacted with a non-plasma based oxidant, thereby forming an oxidized metal surface on the metal. The substrate may be heated and exposed to a passivation agent that adsorbs more onto the oxidized metal than the dielectric material. Such exposure may form a passivation layer on the oxidized metal surface, and the substrate may be exposed to a silicon precursor that adsorbs more onto the dielectric material than the passivation layer, forming a chemi-adsorbed silicon-containing layer on the dielectric material. The substrate may be exposed to the non-plasma based oxidant, that simultaneously partially oxidizes the passivation layer, and oxidizes the chemi-adsorbed silicon-containing layer to form a silicon-containing dielectric film on the dielectric material.
    Type: Application
    Filed: November 30, 2021
    Publication date: February 8, 2024
    Inventors: RONALD M. PEARLSTEIN, XINJIAN LEI, ROBERT GORDON RIDGEWAY, AIPING WU, YI-CHIA LEE, SUMIT AGARWAL, ROHIT NARAYANAN KAVASSERY RAMESH, WANXING XU, RYAN JAMES GASVODA
  • Publication number: 20240014036
    Abstract: A selective plasma enhanced atomic layer deposition (ALD) process is disclosed. The process may comprise loading a substrate comprising a dielectric material, and a metal, into a reactor. The substrate may be reacted with a non-plasma based oxidant, thereby forming an oxidized metal surface on the metal. The substrate may be heated and exposed to a passivation agent that adsorbs more onto the oxidized metal than the dielectric material. Such exposure may form a passivation layer on the oxidized metal surface, and the substrate may be exposed to a silicon precursor that adsorbs more onto the dielectric material that the passivation layer, forming a chemi-adsorbed silicon-containing layer on the dielectric material. The substrate may be exposed to a plasma based oxidant, that simultaneously partially oxidizes the passivation layer, and oxidizes the chemi-adsorbed silicon-containing layer to form a dielectric film on the dielectric material.
    Type: Application
    Filed: November 30, 2021
    Publication date: January 11, 2024
    Inventors: RONALD M. PEARLSTEIN, XINJIAN LEI, ROBERT GORDON RIDGEWAY, AIPING WU, YI-CHIA LEE, SUMIT AGARWAL, ROHIT NARAYANAN KAVASSERY RAMESH, WANXING XU, RYAN JAMES GASVODA
  • Publication number: 20230386830
    Abstract: Exemplary semiconductor processing methods may include providing an oxygen-containing precursor to a semiconductor processing chamber, where a substrate may be positioned. The substrate may include a trench formed between two columns and molybdenum-containing metal regions in a plurality of recesses formed in at least one of the columns. At least two of the molybdenum-containing metal regions may be connected by a molybdenum-containing first liner formed on at least a portion of a sidewall of the trench. The methods may include forming a plasma of the oxygen-containing precursor. The methods may include contacting the molybdenum-containing first liner with plasma effluents of the oxygen-containing precursor, thereby forming an oxidized portion of molybdenum. The methods may include providing a halide precursor. The methods may include contacting oxidized portion of the molybdenum with plasma effluents of the halide precursor, thereby removing the oxidized portion of molybdenum from the sidewall of the trench.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Xiaolin C. Chen, Baiwei Wang, Rohan Puligoru Reddy, Wanxing Xu, Zhenjiang Cui, Anchuan Wang