Patents by Inventor Warren Welborn McAlpine

Warren Welborn McAlpine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180267267
    Abstract: A fiber optic cable includes an optical fiber, strength components disposed on opposite sides of the optical fiber, and a polymeric cable jacket. The optical fiber includes a glass core, a glass cladding, and a polymer coating. The cable jacket surrounds the optical fiber and the strength components. Further, the cable jacket is tightly drawn onto the optical fiber, where excess fiber length of the optical fiber is such that positive strain is present in the optical fiber at room temperature (25° C.).
    Type: Application
    Filed: May 16, 2018
    Publication date: September 20, 2018
    Inventors: George Cornelius Abernathy, Rodney Maurice Burns, Michael John Gimblet, Warren Welborn McAlpine, Allen Michael Miller, David Alan Seddon
  • Patent number: 10078191
    Abstract: An optical cable is provided. The optical cable includes a tubular, elongate body having an inner surface defining a cavity extending between first and second ends of the elongate body and an optical transmission element located with the cavity. The optical cable includes a coupling or bonding structure non-permanently and non-rigidly joining the outer surface of the optical transmission element to the elongate body at a plurality of periodic contact zones such that relative movement between the optical transmission element and the elongate body is resisted.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: September 18, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Bradley Jerome Blazer, Yangbin Chen, Ching-Kee Chien, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Christopher Mark Quinn, David Alan Seddon
  • Publication number: 20180203198
    Abstract: A fiber optic cable includes core elements wound in a pattern of stranding, the core elements comprising tubes surrounding optical fibers. The fiber optic cable further includes an binder film surrounding the stranded core elements. The binder film is continuous peripherally around the core elements, forming a continuous closed loop when viewed in cross-section, and continuous lengthwise along a length of the cable that is at least a meter. Further, the binder film is in radial tension and opposes outwardly transverse deflection of the core elements.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Inventors: Warren Welborn McAlpine, Eric John Mozdy, Joel Laine Parker
  • Publication number: 20180180831
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 9989722
    Abstract: A fiber optic cable includes an optical fiber, strength components disposed on opposite sides of the optical fiber, and a polymeric cable jacket. The optical fiber includes a glass core, a glass cladding, and a polymer coating. The cable jacket surrounds the optical fiber and the strength components. Further, the cable jacket is tightly drawn onto the optical fiber, where excess fiber length of the optical fiber is such that positive strain is present in the optical fiber at room temperature (25° C.).
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: June 5, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: George Cornelius Abernathy, Rodney Maurice Burns, Michael John Gimblet, Warren Welborn McAlpine, Allen Michael Miller, David Alan Seddon
  • Patent number: 9927590
    Abstract: A fiber optic cable includes core elements, a composite film surrounding the core elements, and a jacket surrounding the composite film. The core elements include one or more optical fibers and at least one tube surrounding the one or more optical fibers. The composite film includes a first layer adjoining a second layer, where the composition of the second layer differs from the first. The composite film is relatively thin, having an average thickness over a 10-meter length of the cable that is less than half an average thickness of the jacket over the 10-meter length.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: March 27, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: David Wesley Chiasson, Warren Welborn McAlpine, Joel Laine Parker
  • Patent number: 9927588
    Abstract: An optical communication cable includes a cable body, a plurality of core elements located within the cable body, a reinforcement layer surrounding the plurality of core elements within the cable body, and a film surrounding the plurality of core elements. At least one of the plurality of core elements includes an elongate optical transmission element. The film provides an inwardly directed force onto the core elements, and a surface of the film is bonded to the reinforcement layer.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 27, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Publication number: 20180011274
    Abstract: An optical communication cable subassembly includes a cable core having optical fibers each comprising a core surrounded by a cladding, buffer tubes surrounding subsets of the optical fibers, and a binder film surrounding the buffer tubes. Armor surrounds the cable core, the binder film is bonded to an interior of the armor, and water-absorbing powder particles are provided on an interior surface of the binder film.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 11, 2018
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III, Mario Sergio Sandate Aguilar, Warren Welborn McAlpine
  • Publication number: 20170297044
    Abstract: A recirculating powder applicator includes an applicator body having an inlet on an upstream surface and an outlet on a downstream surface, wherein the inlet and outlet define a passage that extends transversely through the thickness of the applicator body, a powder conduit, an air inlet, an exhaust aperture located on one of the upstream or downstream surfaces, and a circulation chamber located on the interior of the applicator body. The powder conduit and air inlet are in fluid communication with the passage and the passage is in fluid communication with the circulation chamber. A method of applying powder to a substrate during a continuous process includes using a recirculating powder applicator.
    Type: Application
    Filed: October 31, 2016
    Publication date: October 19, 2017
    Inventors: Bradley Jerome Blazer, Craig Miller Conrad, Ming Li, Warren Welborn McAlpine
  • Patent number: 9791652
    Abstract: An optical communication cable subassembly includes a cable core having optical fibers each comprising a core surrounded by a cladding, buffer tubes surrounding subsets of the optical fibers, and a binder film surrounding the buffer tubes. Armor surrounds the cable core, the binder film is bonded to an interior of the armor, and water-absorbing powder particles are provided on an interior surface of the binder film.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 17, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Mario Sergio Sandate Aguilar, Michael John Gimblet, Julian Latelle Greenwood, III, Warren Welborn McAlpine
  • Patent number: 9733443
    Abstract: A fiber optic cable includes a core and a binder film surrounding the core. The core includes a central strength member and core elements, such as buffer tubes containing optical fibers, where the core elements are stranded around the central strength member in a pattern of stranding including reversals in lay direction of the core elements. The binder film is in radial tension around the core such that the binder film opposes outwardly transverse deflection of the core elements. Further, the binder film loads the core elements normally to the central strength member such that contact between the core elements and central strength member provides coupling there between, limiting axial migration of the core elements relative to the central strength member.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: August 15, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, Julian Latelle Greenwood, Keith Aaron Greer, Warren Welborn McAlpine
  • Patent number: 9690062
    Abstract: A flame-retardant fiber optic cable includes core elements, a film surrounding the core elements, and a jacket surrounding the film. The core elements include one or more optical fibers and at least one tube surrounding the one or more optical fibers. The material composition of the film differs from the jacket and the film is relatively thin.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 27, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: William Carl Hurley, Ravinder Kumar Kinnera, Warren Welborn McAlpine, Joel Laine Parker, Christopher Mark Quinn
  • Publication number: 20170146757
    Abstract: An optical communication cable includes a cable body, a plurality of core elements located within the cable body, a reinforcement layer surrounding the plurality of core elements within the cable body, and a film surrounding the plurality of core elements. At least one of the plurality of core elements includes an elongate optical transmission element. The film provides an inwardly directed force onto the core elements, and a surface of the film is bonded to the reinforcement layer.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Publication number: 20170139167
    Abstract: An optical cable is provided. The optical cable includes a tubular, elongate body having an inner surface defining a cavity extending between first and second ends of the elongate body and an optical transmission element located with the cavity. The optical cable includes a coupling or bonding structure non-permanently and non-rigidly joining the outer surface of the optical transmission element to the elongate body at a plurality of periodic contact zones such that relative movement between the optical transmission element and the elongate body is resisted.
    Type: Application
    Filed: October 26, 2016
    Publication date: May 18, 2017
    Inventors: Bradley Jerome Blazer, Yangbin Chen, Ching-Kee Chien, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Christopher Mark Quinn, David Alan Seddon
  • Publication number: 20170131496
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the minor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Application
    Filed: October 10, 2016
    Publication date: May 11, 2017
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Patent number: 9594226
    Abstract: An optical communication cable includes a cable body, a plurality of core elements located within the cable body, a reinforcement layer surrounding the plurality of core elements within the cable body, and a film surrounding the plurality of core elements. At least one of the plurality of core elements includes an elongate optical transmission element. The film provides an inwardly directed force onto the core elements, and a surface of the film is bonded to the reinforcement layer.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 14, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 9557511
    Abstract: A fiber optic cable includes a jacket, an element of the cable interior to the jacket, and first and second powders. The element includes a first surface and a second surface. The cable further includes a third surface interior to the jacket and facing the first surface at a first interface and a fourth surface interior to the jacket and facing the second surface at a second interface. At least one of the third and fourth surfaces is spaced apart from the jacket. The first powder is integrated with at least one of the first and third surfaces at the first interface and the second powder integrated with at least one of the second and fourth surfaces at the second interface. The first interface has greater coupling than the second interface at least in part due to differences in the first and second powders.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: January 31, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Michael John Gimblet, Jason Clay Lail, Warren Welborn McAlpine, David Alan Seddon, Catharina Lemckert Tedder
  • Publication number: 20170023755
    Abstract: A fiber optic cable includes an optical fiber, strength components disposed on opposite sides of the optical fiber, and a polymeric cable jacket. The optical fiber includes a glass core, a glass cladding, and a polymer coating. The cable jacket surrounds the optical fiber and the strength components. Further, the cable jacket is tightly drawn onto the optical fiber, where excess fiber length of the optical fiber is such that positive strain is present in the optical fiber at room temperature (25° C.).
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: George Cornelius Abernathy, Rodney Maurice Burns, Michael John Gimblet, Warren Welborn McAlpine, Allen Michael Miller, David Alan Seddon
  • Patent number: 9547147
    Abstract: A fiber optic cable includes a tape comprising a substrate of an extrudable thermoplastic, core items of the fiber optic cable, and a jacket around the tape and core items. The tape includes water-swellable material integrated therewith and the core items include one or more optical fibers. The tape is incorporated with core items such that the water-swellable material of the tape is configured to limit water from flowing lengthwise along the cable through gaps among the core item.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: January 17, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Anne Germaine Bringuier, Matthew Fitzgerald, Warren Welborn McAlpine, Joel Laine Parker
  • Publication number: 20160320581
    Abstract: Methods for manufacturing cables and cables assemblies include providing powder particles within a tube extruded about optical fiber. The particles may be accelerated so that as they strike the tube and mechanically attach to the tube.
    Type: Application
    Filed: July 14, 2016
    Publication date: November 3, 2016
    Inventors: RODNEY MAURICE BURNS, ANDREY V. FILIPPOV, RILEY SAUNDERS FREELAND, DANIEL WARREN HAWTOF, WARREN WELBORN MCALPINE, CATHARINA LEMCKERT TEDDER