Patents by Inventor Wayne W. Simmons

Wayne W. Simmons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140341785
    Abstract: A chemical plant includes a radiant heat-driven chemical reactor having generally concentric reactor tubes with an inner tube and an outer tube located inside a cavity of a thermal receiver. Particles of biomass, or natural gas, and an entrainment gas are fed into the inner tube near a bottom of the tube. The biomass and the entrainment gas flow upward through the inner tube into an upper plenum, and then flow downward through an annular space between the inner tube and the outer tube. The concentric reactor tubes and the thermal receiver are configured to cooperate such that heat is radiantly transferred by primarily absorption and re-radiation to drive the biomass gasification reaction or natural gas reformation reaction of reactants flowing through the reactor tubes in the vertical sections of the reactor, and turbulent flow and mixing of the reactants occurs in the upper plenum part of the reactor.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: Sundrop Fuels, Inc.
    Inventors: Wayne W. Simmons, Christopher Perkins, Paul Lichty, Timothy E. Laska
  • Publication number: 20140318013
    Abstract: A method, apparatus, and system for a solar-driven chemical plant that may include a solar thermal receiver having a cavity with an inner wall, where the solar thermal receiver is aligned to absorb concentrated solar energy from one or more of 1) an array of heliostats, 2) solar concentrating dishes, and 3) any combination of the two. Some embodiments may include a solar-driven chemical reactor having multiple reactor tubes located inside the cavity of solar thermal receiver, wherein a chemical reaction driven by radiant heat occurs in the multiple reactor tubes, and wherein particles of biomass are gasified in the presence of a steam (H2O) carrier gas and methane (CH4) in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the solar thermal energy from the absorbed concentrated solar energy in the multiple reactor tubes.
    Type: Application
    Filed: July 8, 2014
    Publication date: October 30, 2014
    Inventors: Wayne W. Simmons, Christopher Perkins, Zoran Radojica Zovanovic
  • Publication number: 20140291204
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Application
    Filed: May 28, 2014
    Publication date: October 2, 2014
    Applicant: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Strangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Lewis Litt
  • Publication number: 20140246625
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 4, 2014
    Applicant: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Publication number: 20140241949
    Abstract: A radiant heat-driven chemical reactor comprising a generally cylindrical pressure refractory lined vessel, a plurality of radiant heating tubes, and a metal tube sheet to form a seal for the pressure refractory lined vessel near a top end of the pressure refractory lined vessel. The metal tube sheet has a plurality of injection ports extending vertically through the metal tube sheet and into the refractory lined vessel such that biomass is injected at an upper end of the vessel between the radiant heating tubes, and the radiant heat is supplied to an interior of the plurality of radiant heating tubes. The radiant heat-driven chemical reactor is configured to 1) gasify particles of biomass in a presence of steam (H2O) to produce a low CO2 synthesis gas that includes hydrogen and carbon monoxide gas, or 2) reform natural gas in a non-catalytic reformation reaction, using thermal energy from the radiant heat.
    Type: Application
    Filed: May 15, 2014
    Publication date: August 28, 2014
    Applicant: Sundrop Fuels, Inc.
    Inventors: Christopher Perkins, Wayne W. Simmons, Paul Lichty
  • Patent number: 8747656
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: June 10, 2014
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Dwayne Litt
  • Patent number: 8703984
    Abstract: This invention relates to a process for converting ethylene to ethylene oxide comprising: flowing reactants comprising ethylene and oxygen or a source of oxygen in a microchannel reactor in contact with a catalyst to form a product comprising ethylene oxide, the reactants undergoing an exothermic reaction in the microchannel reactor; and transferring heat from the microchannel reactor to a heat exchanger.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: April 22, 2014
    Assignee: Velocys, Inc.
    Inventors: Terry Mazanec, Anna Lee Tonkovich, Wayne W. Simmons, Francis P. Daly, Richard Q. Long, Laura J. Silva
  • Publication number: 20130341569
    Abstract: An integrated plant that includes a steam explosion process unit and biomass gasifier to generate syngas from biomass. A steam explosion process unit applies a combination of heat, pressure, and moisture to the biomass to make the biomass into a moist fine particle form. The steam explosion process unit applies steam with a high pressure to heat and pressurize any gases and fluids present inside the biomass to internally blow apart the bulk structure of the biomass via a rapid depressurization of the biomass with the increased moisture content. Those produced moist fine particles of biomass are subsequently fed to a feed section of the biomass gasifier, which reacts the biomass particles in a rapid biomass gasification reaction to produce syngas components.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: SUNDROP FUELS, INC.
    Inventors: Robert S. Ampulski, John T. Turner, Wayne W. Simmons
  • Patent number: 8383054
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 26, 2013
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Publication number: 20120181483
    Abstract: A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Applicant: SUNDROP FUELS, INC.
    Inventors: Wayne W. Simmons, Sidney P. White, Christopher Perkins
  • Patent number: 8221528
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb a solute and then energy or heat is removed to absorb a solute using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between a solute and other gases in a solution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 17, 2012
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Ravi Arora, Qiu Dongming, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Laura J. Silva, Steven Perry
  • Publication number: 20120145965
    Abstract: Various processes and apparatus are discussed for an ultra-high heat flux chemical reactor. A thermal receiver and the reactor tubes are aligned to 1) absorb and re-emit radiant energy, 2) highly reflect radiant energy, and 3) any combination of these, to maintain an operational temperature of the enclosed ultra-high heat flux chemical reactor. Particles of biomass are gasified in the presence of a steam carrier gas and methane in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the ultra-high heat flux thermal energy radiated from the inner wall and then into the multiple reactor tubes. The multiple reactor tubes and cavity walls of the receiver transfer energy primarily by radiation absorption and re-radiation, rather than by convection or conduction, to the reactants in the chemical reaction to drive the endothermic chemical reaction flowing in the reactor tubes.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: SUNDROP FUELS, INC.
    Inventors: Wayne W. Simmons, Christopher Perkins, Zoran Jovanic, Courtland M. Hilton, Peter Pop, Bryan J. Schramm, John T. Turner
  • Patent number: 8100996
    Abstract: This invention relates to a process for converting a carbonaceous material to a desired product comprising one or more hydrocarbons or one or more alcohols, the process comprising: (A) gasifying the carbonaceous material at a temperature in excess of about 700° C. to form synthesis gas; and (B) flowing the synthesis gas in a microchannel reactor in contact with a catalyst to convert the synthesis gas to the desired product.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 24, 2012
    Assignee: Velocys, Inc.
    Inventors: Wayne W. Simmons, Robert Dwayne Litt, Anna Lee Tonkovich, Laura J. Silva, Daniel Francis Ryan, Bruce Stangeland, John Brophy, Jeffrey S. McDaniel
  • Publication number: 20110300039
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Application
    Filed: April 25, 2011
    Publication date: December 8, 2011
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Patent number: 8029604
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Qiu Dongming, Laura J. Silva, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Steven Perry
  • Patent number: 7923592
    Abstract: The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200° C. to about 1200° C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: April 12, 2011
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Thomas Yuschak, Timothy J. LaPlante, Scott Rankin, Steven T. Perry, Sean Patrick Fitzgerald, Wayne W. Simmons, Terry Mazanec, Eric Daymo
  • Patent number: 7829602
    Abstract: The disclosed invention relates to a process and apparatus for converting natural gas to higher molecular weight hydrocarbons. The process includes steam reforming to form synthesis gas followed by a Fischer-Tropsch reaction to convert the synthesis gas to the high molecular weight hydrocarbons. The reforming and Fischer-Tropsch reactions are conducted in microchannel reactors. The higher molecular weight hydrocarbons may be further treated to form hydrocarbon products such as middle distillate fuels, lubricating oils, and the like. The apparatus includes vessels containing SMR microchannel reactors and Fischer-Tropsch microchannel reactors. A composition comprising a mixture of olefins and paraffins is disclosed.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: November 9, 2010
    Assignee: Velocys, Inc.
    Inventors: Robert Dwayne Litt, Wayne W. Simmons
  • Publication number: 20100174124
    Abstract: This invention relates to a process for conducting a hydrocracking or a hydrotreating process in a microchannel reactor. This invention also relates to a process and apparatus for flowing a vapor and liquid into a plurality of microchannels in a microchannel processing unit.
    Type: Application
    Filed: October 9, 2009
    Publication date: July 8, 2010
    Inventors: Anna Lee Tonkovich, Ravi Arora, John Brophy, Francis P. Daly, Soumitra Deshmukh, Maddalena Fanelli, Kai Tod Paul Jarosch, Timothy J. LaPlante, Richard Q. Long, Terry Mazanec, Daniel Francis Ryan, Laura J. Silva, Wayne W. Simmons, Bruce Stangeland, Yong Wang, Thomas Yuschak, Steven T. Perry, Jeffrey Dale Marco, Michael Alan Marchiando, Robert Dwayne Litt
  • Publication number: 20100071410
    Abstract: The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.
    Type: Application
    Filed: November 3, 2009
    Publication date: March 25, 2010
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Laura J. Silva, Dongming Qiu, Steven J. Perry, Thomas Yuschak, Thomas P. Hickey, Ravi Arora, Amanda Smith, Robert Dwayne Litt, Paul Neagle
  • Publication number: 20100024645
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb a solute and then energy or heat is removed to absorb a solute using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between a solute and other gases in a solution.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Ravi Arora, Qiu Dongming, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Laura J. Silva, Steven Perry