Patents by Inventor Wenda Xu

Wenda Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11488476
    Abstract: A detection system includes a first-sensor, a second-sensor, and a controller. The first-sensor is mounted on a host-vehicle. The first-sensor detects objects in a first-field-of-view. The second-sensor is positioned at a second-location different than the first-location. The second-sensor detects objects in a second-field-of-view that at least partially overlaps the first-field of view. The controller is in communication with the first-sensor and the second-sensor. The controller selects the second-sensor to detect an object-of-interest in accordance with a determination that an obstruction blocks a first-line-of-sight between the first-sensor and the object-of-interest.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 1, 2022
    Assignee: Motional AD LLC
    Inventors: Junsung Kim, Junqing Wei, Wenda Xu, Gaurav Bhatia
  • Patent number: 11435752
    Abstract: A sensor data fusion system for a vehicle with multiple sensors includes a first-sensor, a second-sensor, and a controller-circuit. The first-sensor is configured to output a first-frame of data and a subsequent-frame of data indicative of objects present in a first-field-of-view. The first-frame is characterized by a first-time-stamp, the subsequent-frame of data characterized by a subsequent-time-stamp different from the first-time-stamp. The second-sensor is configured to output a second-frame of data indicative of objects present in a second-field-of-view that overlaps the first-field-of-view. The second-frame is characterized by a second-time-stamp temporally located between the first-time-stamp and the subsequent-time-stamp. The controller-circuit is configured to synthesize an interpolated-frame from the first-frame and the subsequent-frame. The interpolated-frame is characterized by an interpolated-time-stamp that corresponds to the second-time-stamp.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: September 6, 2022
    Assignee: Motional AD LLC
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Patent number: 11250276
    Abstract: A steering-system for an automated vehicle is provided. The system includes an object-detector and a controller. The object-detector indicates a height and/or a width of an object approached by a host-vehicle. The controller is configured to steer the host-vehicle and is in communication with the object-detector. The controller steers the host-vehicle to straddle the object when the height of the object is less than a ground-clearance of the host-vehicle, and/or the width of the object is less than a track-width of the host-vehicle.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: February 15, 2022
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Wenda Xu
  • Patent number: 11099264
    Abstract: A radar system for an automated vehicle includes a digital-map, a radar, and a controller. The digital-map indicates a characteristic of a roadway traveled by a host-vehicle. The radar detects objects proximate to the host-vehicle. The radar is equipped with a range-setting that is selectively variable. The controller is in communication with the digital-map and the radar. The controller is configured to select the range-setting of the radar based on the characteristic of the roadway. The characteristic may be based on speed-limit, road-shape (e.g. curve-radius), a horizon-distance, and/or an obstruction (e.g. hill, sign, or building). The radar may be equipped with a frame-rate-setting (i.e. pulse repetition frequency or PRF) that is selectively variable, and the controller may be further configured to select the frame-rate-setting based on the characteristic of the roadway.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: August 24, 2021
    Assignee: Motional AD LLC
    Inventors: Gaurav Bhatia, Junqing Wei, Wenda Xu
  • Patent number: 11092963
    Abstract: A system for operating an autonomous vehicle includes a passenger-detector and a controller-circuit. The passenger-detector is operable to determine a passenger-count of passengers present in a host-vehicle. The controller-circuit is in communication with the passenger-detector and vehicle-controls of the host-vehicle. The controller-circuit is configured to operate the host-vehicle in an autonomous-mode and in accordance with a parameter. The parameter is set to an empty-value when passenger-count is equal to zero, and the parameter is set to an occupied-value different from the empty-value when the passenger count is greater than zero.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: August 17, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Wenda Xu
  • Patent number: 11087624
    Abstract: A safe-to-proceed system (10) for operating an automated vehicle proximate to an intersection (14) includes an intersection-detector (18), a vehicle-detector (20), and a controller (24). The intersection-detector (18) is suitable for use on a host-vehicle (12). The intersection-detector (18) is used to determine when a host-vehicle (12) is proximate to an intersection (14). The vehicle-detector (20) is also suitable for use on the host-vehicle (12). The vehicle-detector (20) is used to estimate a stopping-distance (22) of an other-vehicle (16) approaching the intersection (14). The controller (24) is in communication with the intersection-detector (18) and the vehicle-detector (20). The controller (24) is configured to prevent the host-vehicle (12) from entering the intersection (14) when the stopping-distance (22) indicates that the other-vehicle (16) will enter the intersection (14) before stopping.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 10, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Gaurav Bhatia, Wenda Xu
  • Patent number: 11087626
    Abstract: A system for operating an automated vehicle in a crowd of pedestrians includes an object-detector, optionally, a signal detector, and a controller. The object-detector detects pedestrians proximate to a host-vehicle. The signal-detector detects a signal-state displayed by a traffic-signal that displays a stop-state that indicates when the host-vehicle should stop so the pedestrians can cross in front of the host-vehicle, and displays a go-state that indicates when the pedestrians should stop passing in front of the host-vehicle so that the host-vehicle can go forward. The controller is in control of movement of the host-vehicle and in communication with the object-detector and the signal-detector. The controller operates the host-vehicle to stop the host-vehicle when the stop-state is displayed, and operates the host-vehicle to creep-forward after a wait-interval after the traffic-signal changes to the go-state when the pedestrians fail to stop passing in front of the host-vehicle.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: August 10, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Wenda Xu, Jong Ho Lee
  • Publication number: 20210223775
    Abstract: An operating system for an automated vehicle equipped with limited field-of-view sensors is provided. The system includes an object-detector and a controller. The object-detector detects objects proximate to a host-vehicle. A field-of-view of the object-detector is characterized by a preferred-portion of the field-of-view, where the preferred-portion is characterized as preferred for using the object-detector. The controller is in communication with the object-detector. The controller steers the host-vehicle to align the preferred-portion with a detected-object. The system optionally includes an intersecting-road-indicator that indicates an intersecting-road connected to an intersection approached by the host-vehicle, and the controller is in communication with the intersecting-road-indicator.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Junsung Kim, Wenda Xu, Junqing Wei
  • Patent number: 11067984
    Abstract: A driving-rule system (10) suitable to operate an automated includes a vehicle-detector (16) and a controller (20). The vehicle-detector (16) is suitable for use on a host-vehicle (12). The vehicle-detector (16) is used to detect movement of an other-vehicle (14) proximate to the host-vehicle (12). The controller (20) is in communication with the vehicle-detector (16). The controller (20) is configured to operate the host-vehicle (12) in accordance with a driving-rule (22), detect an observed-deviation (24) of the driving-rule (22) by the other-vehicle (14), and modify the driving-rule (22) based on the observed-deviation (24).
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 20, 2021
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Wenda Xu, Jarrod M. Snider, Jong Ho Lee
  • Publication number: 20210116921
    Abstract: A scenario aware perception system (10) suitable for use on an automated vehicle includes a traffic-scenario detector (14), an object-detection device (24), and a controller (32). The traffic-scenario detector (14) is used to detect a present-scenario (16) experienced by a host-vehicle (12). The object-detection device (24) is used to detect an object (26) proximate to the host-vehicle (12). The controller (32) is in communication with the traffic-scenario detector (14) and the object-detection device (24). The controller (32) configured to determine a preferred-algorithm (36) used to identify the object (26). The preferred-algorithm (36) is determined based on the present-scenario (16).
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Publication number: 20210101625
    Abstract: The subject matter described in this specification is directed to a system and techniques for operating an autonomous vehicle (AV) at a multi-way stop intersection. After detecting the AV is at a primary stopline of the multi-way stop intersection, a planned travel path though the multi-way stop intersection is obtained. If the planned travel path of the AV through the multi-way stop intersection satisfies a set of one or more clearance criteria, the AV proceeds past the primary stopline. The clearance criteria include a criterion that is satisfied in response to detecting the AV is clear to safely merge into a travel lane corresponding to the planned travel path.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 8, 2021
    Applicant: MOTIONAL AD LLC
    Inventors: Mochan SHRESTHA, Shu-Kai LIN, Baxter SMITH, Xiaojun SUN, Wenda XU
  • Patent number: 10969785
    Abstract: An operating system for an automated vehicle equipped with limited field-of-view sensors is provided. The system includes an object-detector and a controller. The object-detector detects objects proximate to a host-vehicle. A field-of-view of the object-detector is characterized by a preferred-portion of the field-of-view, where the preferred-portion is characterized as preferred for using the object-detector. The controller is in communication with the object-detector. The controller steers the host-vehicle to align the preferred-portion with a detected-object. The system optionally includes an intersecting-road-indicator that indicates an intersecting-road connected to an intersection approached by the host-vehicle, and the controller is in communication with the intersecting-road-indicator.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 6, 2021
    Assignee: Motional AD LLC
    Inventors: Junsung Kim, Wenda Xu, Junqing Wei
  • Patent number: 10895879
    Abstract: A scenario aware perception system (10) suitable for use on an automated vehicle includes a traffic-scenario detector (14), an object-detection device (24), and a controller (32). The traffic-scenario detector (14) is used to detect a present-scenario (16) experienced by a host-vehicle (12). The object-detection device (24) is used to detect an object (26) proximate to the host-vehicle (12). The controller (32) is in communication with the traffic-scenario detector (14) and the object-detection device (24). The controller (32) configured to determine a preferred-algorithm (36) used to identify the object (26). The preferred-algorithm (36) is determined based on the present-scenario (16).
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: January 19, 2021
    Assignee: Motional AD LLC
    Inventors: Wenda Xu, Jarrod M. Snider, Junqing Wei
  • Patent number: 10877478
    Abstract: An object-classification system for an automated vehicle includes an object-detector and a controller. The object-detector may be a camera, radar, lidar or any combination thereof. The object-detector detects an object proximate to a host-vehicle. The controller is in communication with the object-detector. The controller is configured to determine a density of the object based on a motion-characteristic of the object caused by air-movement proximate to the object, and operate the host-vehicle to avoid striking the object with the host-vehicle when the density of the object is classified as dense.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: December 29, 2020
    Assignee: Motional AD LLC
    Inventors: Junqing Wei, Wenda Xu
  • Publication number: 20200375287
    Abstract: An assistive exoskeleton glove system for a hand of an individual is described. In one example, the system includes a brace mount and a finger brace including a seat platform mechanically coupled to the brace mount. The finger brace can include a plurality of brace links, a plurality of constraint links, and an actuation lever. The system can also include an actuator mechanically coupled to the actuation lever and configured to articulate the finger brace over a predetermined range of motion. The range of motion can be tailored for different purposes. The system can also include finger abduction and adduction mechanisms, a thumb brace, a thumb flexion actuator, and a control system. The control system can be configured to detect a relative difference in feedback signals provided from target and offset encoders on the finger brace, as an input to control the actuator, and real-time grasping forces among other inputs.
    Type: Application
    Filed: June 1, 2020
    Publication date: December 3, 2020
    Inventors: Pinhas BEN-TZVI, Bijo SEBASTIAN, Eric M. REFOUR, Wenda XU, Sarthak PRADHAN, Yunfei GUO
  • Patent number: 10848718
    Abstract: A vehicle perception sensor adjustment system includes a perception-sensor, a digital-map, and controller-circuit. The perception-sensor is configured to detect an object proximate to a host-vehicle. The perception-sensor is characterized as having a field-of-view that is adjustable. The digital-map indicates a contour of a roadway traveled by the host-vehicle. The controller-circuit in communication with the perception-sensor and the digital-map. The controller-circuit determines the field-of-view of the perception-sensor in accordance with the contour of the roadway indicated by the digital-map, and outputs a control-signal to the perception-sensor that adjusts the field-of-view of the perception-sensor.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: November 24, 2020
    Assignee: Aptiv Technologies Limited
    Inventors: Guchan Ozbilgin, Wenda Xu, Jarrod M. Snider, Yimu Wang, Yifan Yang, Junqing Wei
  • Publication number: 20200175876
    Abstract: A system for operating an automated vehicle in a crowd of pedestrians includes an object-detector, optionally, a signal detector, and a controller. The object-detector detects pedestrians proximate to a host-vehicle. The signal-detector detects a signal-state displayed by a traffic-signal that displays a stop-state that indicates when the host-vehicle should stop so the pedestrians can cross in front of the host-vehicle, and displays a go-state that indicates when the pedestrians should stop passing in front of the host-vehicle so that the host-vehicle can go forward. The controller is in control of movement of the host-vehicle and in communication with the object-detector and the signal-detector. The controller operates the host-vehicle to stop the host-vehicle when the stop-state is displayed, and operates the host-vehicle to creep-forward after a wait-interval after the traffic-signal changes to the go-state when the pedestrians fail to stop passing in front of the host-vehicle.
    Type: Application
    Filed: August 5, 2019
    Publication date: June 4, 2020
    Inventors: Junqing Wei, Wenda Xu, Jong Ho Lee
  • Publication number: 20190354784
    Abstract: A steering-system for an automated vehicle is provided. The system includes an object-detector and a controller. The object-detector indicates a height and/or a width of an object approached by a host-vehicle. The controller is configured to steer the host-vehicle and is in communication with the object-detector. The controller steers the host-vehicle to straddle the object when the height of the object is less than a ground-clearance of the host-vehicle, and/or the width of the object is less than a track-width of the host-vehicle.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Junqing Wei, Wenda Xu
  • Publication number: 20190332112
    Abstract: A system for operating an autonomous vehicle includes a passenger-detector and a controller-circuit. The passenger-detector is operable to determine a passenger-count of passengers present in a host-vehicle. The controller-circuit is in communication with the passenger-detector and vehicle-controls of the host-vehicle. The controller-circuit is configured to operate the host-vehicle in an autonomous-mode and in accordance with a parameter. The parameter is set to an empty-value when passenger-count is equal to zero, and the parameter is set to an occupied-value different from the empty-value when the passenger count is greater than zero.
    Type: Application
    Filed: May 1, 2018
    Publication date: October 31, 2019
    Inventors: Junqing Wei, Wenda Xu
  • Publication number: 20190304308
    Abstract: A safe-to-proceed system (10) for operating an automated vehicle proximate to an intersection (14) includes an intersection-detector (18), a vehicle-detector (20), and a controller (24). The intersection-detector (18) is suitable for use on a host-vehicle (12). The intersection-detector (18) is used to determine when a host-vehicle (12) is proximate to an intersection (14). The vehicle-detector (20) is also suitable for use on the host-vehicle (12). The vehicle-detector (20) is used to estimate a stopping-distance (22) of an other-vehicle (16) approaching the intersection (14). The controller (24) is in communication with the intersection-detector (18) and the vehicle-detector (20). The controller (24) is configured to prevent the host-vehicle (12) from entering the intersection (14) when the stopping-distance (22) indicates that the other-vehicle (16) will enter the intersection (14) before stopping.
    Type: Application
    Filed: May 4, 2017
    Publication date: October 3, 2019
    Inventors: Junqing Wei, Gaurav Bhatia, Wenda Xu