Patents by Inventor Wendy Ng

Wendy Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230073655
    Abstract: A power management integrated circuit (PMIC) can improve the ramp up speed of a boost converter with the inclusion of a controllable switch that may modify the connection of an output capacitor to reduce the ramp time as the output voltage is ramping to a desired boost setpoint. The switch may be controlled using jump start logic to switch a first plate or terminal of the output capacitor from a ground connection to a voltage supply connection. Once a threshold voltage is reached, the first plate of the capacitor may be switched from the supply voltage to ground. In certain cases, by switching the connection of the output capacitor between ground and a supply voltage based on one or more threshold voltages or a boost setpoint, the time to ramp from an initial voltage to a desired boost setpoint may be reduced.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 9, 2023
    Inventors: Wendy Ng, James Jason LoCascio
  • Patent number: 11581857
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 14, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Patent number: 11476806
    Abstract: A power management integrated circuit (PMIC) can improve the ramp up speed of a boost converter with the inclusion of a controllable switch that may modify the connection of an output capacitor to reduce the ramp time as the output voltage is ramping to a desired boost setpoint. The switch may be controlled using jump start logic to switch a first plate or terminal of the output capacitor from a ground connection to a voltage supply connection. Once a threshold voltage is reached, the first plate of the capacitor may be switched from the supply voltage to ground. In certain cases, by switching the connection of the output capacitor between ground and a supply voltage based on one or more threshold voltages or a boost setpoint, the time to ramp from an initial voltage to a desired boost setpoint may be reduced.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: October 18, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, James Jason LoCascio
  • Publication number: 20220224292
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Patent number: 11323077
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: May 3, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Patent number: 11218116
    Abstract: A power management integrated circuit (PMIC) can improve the ramp up speed of a boost converter with the inclusion of a controllable switch that may modify the connection of an output capacitor to reduce the ramp time as the output voltage is ramping to a desired boost setpoint. The switch may be controlled using jump start logic to switch a first plate or terminal of the output capacitor from a ground connection to a voltage supply connection. Once a threshold voltage is reached, the first plate of the capacitor may be switched from the supply voltage to ground. The PMIC may further include a quick start assembly that can drive the boost converter at a high duty-cycle.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 4, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, James Jason LoCascio
  • Publication number: 20210167740
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Application
    Filed: November 6, 2020
    Publication date: June 3, 2021
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Publication number: 20210104979
    Abstract: A power management integrated circuit (PMIC) can improve the ramp up speed of a boost converter with the inclusion of a controllable switch that may modify the connection of an output capacitor to reduce the ramp time as the output voltage is ramping to a desired boost setpoint. The switch may be controlled using jump start logic to switch a first plate or terminal of the output capacitor from a ground connection to a voltage supply connection. Once a threshold voltage is reached, the first plate of the capacitor may be switched from the supply voltage to ground. In certain cases, by switching the connection of the output capacitor between ground and a supply voltage based on one or more threshold voltages or a boost setpoint, the time to ramp from an initial voltage to a desired boost setpoint may be reduced.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 8, 2021
    Inventors: Wendy Ng, James Jason LoCascio
  • Publication number: 20210104985
    Abstract: A power management integrated circuit (PMIC) can improve the ramp up speed of a boost converter with the inclusion of a controllable switch that may modify the connection of an output capacitor to reduce the ramp time as the output voltage is ramping to a desired boost setpoint. The switch may be controlled using jump start logic to switch a first plate or terminal of the output capacitor from a ground connection to a voltage supply connection. Once a threshold voltage is reached, the first plate of the capacitor may be switched from the supply voltage to ground. The PMIC may further include a quick start assembly that can drive the boost converter at a high duty-cycle.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 8, 2021
    Inventors: Wendy Ng, James Jason LoCascio
  • Patent number: 10855233
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: December 1, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Patent number: 10840856
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 17, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Patent number: 10811980
    Abstract: According to certain aspects, a radio-frequency module can include a packaging substrate configured to receive a plurality of components and a voltage converter implemented on the packaging substrate. The voltage converter can include a high-side switch circuit block comprising a plurality of high-side switching elements and a low-side switch circuit block comprising a plurality of low-side switching elements. The voltage converter may include an intermediate node coupled to one or more high-side switching elements and coupled to one or more low-side switching elements. The voltage converter may further include a segmentation circuit block communicatively coupled to the high-side switch circuit block and communicatively coupled to the low-side switch circuit block.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: October 20, 2020
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, James Jason Locascio
  • Publication number: 20200092830
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Application
    Filed: September 7, 2019
    Publication date: March 19, 2020
    Inventors: Wendy NG, Yin Chun YEUNG, Michael Lee SCHEEL
  • Publication number: 20200076313
    Abstract: According to certain aspects, a radio-frequency module can include a packaging substrate configured to receive a plurality of components and a voltage converter implemented on the packaging substrate. The voltage converter can include a high-side switch circuit block comprising a plurality of high-side switching elements and a low-side switch circuit block comprising a plurality of low-side switching elements. The voltage converter may include an intermediate node coupled to one or more high-side switching elements and coupled to one or more low-side switching elements. The voltage converter may further include a segmentation circuit block communicatively coupled to the high-side switch circuit block and communicatively coupled to the low-side switch circuit block.
    Type: Application
    Filed: August 19, 2019
    Publication date: March 5, 2020
    Inventors: Wendy NG, James Jason LOCASCIO
  • Patent number: 10512129
    Abstract: Boost regulators with dynamic regulation band are disclosed. In certain configurations, a boost regulator system includes a field effect transistor (FET) current source having a gate controlled by a current level control signal, a source that receives a regulator output voltage, and a drain that outputs a current. The boost regulator system further includes a boost regulator that generates the regulator output voltage based on a reference voltage. The boost regulator includes a headroom detection circuit electrically coupled to the drain of the FET current source and operable to generate a headroom signal indicating a detected voltage headroom of the FET current source. The boost regulator further includes a regulator control circuit that controls a voltage level of the reference voltage based on the headroom signal, and that controls a size of a regulation band of the boost regulator based on the current level control signal.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 17, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: George A. Hariman, Chak S. Ngai, Wendy Ng
  • Patent number: 10420042
    Abstract: In one implementation, a voltage boost assembly including a boost converter having a capacitive element arranged at an output, and an inductive element connectable to an electrical supply. The voltage boost assembly also includes a sensor assembly provided to generate a quick-start enable signal in response to detecting that an electrical condition relative to an electrical output of the boost converter has breached a first threshold. The voltage boost assembly further includes a quick-start module responsive to the quick-start enable signal, and configured to drive the boost converter at a relatively high duty-cycle and so that the boost converter delivers an output current that satisfies a second threshold in order to charge the capacitive element arranged at the output.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: September 17, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Yin Chun Yeung, Michael Lee Scheel
  • Patent number: 10389257
    Abstract: A voltage converter is disclosed to include a high-side switch circuit block comprising a plurality of high-side switching elements and a low-side switch circuit block comprising a plurality of low-side switching elements. The voltage converter may include an intermediate node coupled to one or more high-side switching elements and coupled to one or more low-side switching elements. The voltage converter may further include a segmentation circuit block communicatively coupled to the high-side switch circuit block and communicatively coupled to the low-side switch circuit block.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: August 20, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, James Jason Locascio
  • Publication number: 20190116638
    Abstract: Boost regulators with dynamic regulation band are disclosed. In certain configurations, a boost regulator system includes a field effect transistor (FET) current source having a gate controlled by a current level control signal, a source that receives a regulator output voltage, and a drain that outputs a current. The boost regulator system further includes a boost regulator that generates the regulator output voltage based on a reference voltage. The boost regulator includes a headroom detection circuit electrically coupled to the drain of the FET current source and operable to generate a headroom signal indicating a detected voltage headroom of the FET current source. The boost regulator further includes a regulator control circuit that controls a voltage level of the reference voltage based on the headroom signal, and that controls a size of a regulation band of the boost regulator based on the current level control signal.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 18, 2019
    Inventors: George A. Hariman, Chak S. Ngai, Wendy Ng
  • Publication number: 20190036495
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 31, 2019
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Publication number: 20190036494
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 31, 2019
    Inventors: Wendy Ng, Wei Long, Kevin Cho