Patents by Inventor Wesley C. Natzle

Wesley C. Natzle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9263276
    Abstract: A transistor is provided that includes a silicon layer with a source region and a drain region, a gate stack disposed on the silicon layer between the source region and the drain region, an L shaped gate encapsulation layer disposed on sidewalls of the gate stack, and a spacer disposed above the horizontal portion of the gate encapsulation layer and adjacent to the vertical portion of the gate encapsulation layer. The gate stack has a first layer of high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. The gate encapsulation layer has a vertical portion covering the sidewalls of the first, second, and third layers of the gate stack and a horizontal portion covering a portion of the silicon layer that is adjacent to the gate stack.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Renee T. Mo, Wesley C. Natzle, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 9252018
    Abstract: A transistor is provided that includes a silicon layer with a source region and a drain region, a gate stack disposed on the silicon layer between the source region and the drain region, an L shaped gate encapsulation layer disposed on sidewalls of the gate stack, and a spacer disposed above the horizontal portion of the gate encapsulation layer and adjacent to the vertical portion of the gate encapsulation layer. The gate stack has a first layer of high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. The gate encapsulation layer has a vertical portion covering the sidewalls of the first, second, and third layers of the gate stack and a horizontal portion covering a portion of the silicon layer that is adjacent to the gate stack.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Renee T. Mo, Wesley C. Natzle, Vijay Narayanan, Jeffrey W. Sleight
  • Patent number: 8900961
    Abstract: A method of selectively forming a germanium structure within semiconductor manufacturing processes removes the native oxide from a nitride surface in a chemical oxide removal (COR) process and then exposes the heated nitride and oxide surface to a heated germanium containing gas to selectively form germanium only on the nitride surface but not the oxide surface.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Anthony I. Chou, Toshiharu Furukawa, Steven J. Holmes, Wesley C. Natzle
  • Patent number: 8575709
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Patent number: 8492803
    Abstract: A semiconductor structure is fabricated with reduced gate capacitance by thinning of a gate electrode to provide a reduced thickness gate electrode. The gate electrode is thinned after forming a spacer layer adjoining the gate electrode. In addition, the height of the spacer layer may also be reduced. The spacer layer thus has an enhanced horizontal width desired for locating an intrinsic source/drain with respect to an extension region and in particular, an enhanced horizontal width relative to the spacer height. The reduced thickness gate electrode may be fully silicided to provide decreased gate resistance. A raised source/drain layer may be located upon the intrinsic source/drain region. The raised source/drain layer may have a top surface higher than the reduced thickness gate electrode. In addition, the raised source/drain layer may have a top surface higher than the reduced height spacer layer.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ricky S. Amos, Wesley C. Natzle, Siddhartha Panda, Brian L. Tessier
  • Publication number: 20120299122
    Abstract: A transistor is provided that includes a silicon layer with a source region and a drain region, a gate stack disposed on the silicon layer between the source region and the drain region, an L shaped gate encapsulation layer disposed on sidewalls of the gate stack, and a spacer disposed above the horizontal portion of the gate encapsulation layer and adjacent to the vertical portion of the gate encapsulation layer. The gate stack has a first layer of high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. The gate encapsulation layer has a vertical portion covering the sidewalls of the first, second, and third layers of the gate stack and a horizontal portion covering a portion of the silicon layer that is adjacent to the gate stack.
    Type: Application
    Filed: August 10, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renee T. MO, Wesley C. NATZLE, Vijay NARAYANAN, Jeffrey W. SLEIGHT
  • Patent number: 8318565
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: November 27, 2012
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Publication number: 20120286374
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Patent number: 8198103
    Abstract: A chemical composition and method for providing uniform and consistent etching of gate stacks on a semiconductor wafer, whereby the composition includes an etchant and an added ballast gas added. The gate stacks are formed using this combined etchant and ballast gas composition. The ballast gas may either be similar to, or the equivalent of, a gaseous byproduct generated within the processing chamber. The ballast gas is added in either an overload amount, or in an amount sufficient to compensate for varying pattern factor changes across the water. This etchant and added ballast gas form a substantially homogeneous etchant across the entire wafer, thereby accommodating for or compensating for these pattern factor differences. When etching the wafer using this homogeneous etchant, a passivation layer is formed on exposed wafer surfaces. The passivation layer protects the lateral sidewalls of the gate stacks during etch to result in straighter gate stacks.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Dalton, Wesley C. Natzle, Paul W. Pastel, Richard S. Wise, Hongwen Yan, Ying Zhang
  • Publication number: 20110221012
    Abstract: Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 15, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, William K. Henson, Siddarth A. Krishnan, Unoh Kwon, Naim Moumen, Wesley C. Natzle
  • Patent number: 7955926
    Abstract: In one embodiment, the present invention provides a method of fabricating a semiconducting device that includes providing a substrate including at least one semiconducting region and at least one oxygen source region; forming an oxygen barrier material atop portions of an upper surface of the at least one oxygen region; forming a high-k gate dielectric on the substrate including the at least one semiconducting region, wherein oxygen barrier material separates the high-k gate dielectric from the at least one oxygen source material; and forming a gate conductor atop the high-k gate dielectric.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Wesley C. Natzle, Renee T. Mo, Rashmi Jha, Kathryn T. Schonenberg, Richard A. Conti
  • Publication number: 20110115032
    Abstract: A transistor is provided that includes a silicon layer with a source region and a drain region, a gate stack disposed on the silicon layer between the source region and the drain region, an L shaped gate encapsulation layer disposed on sidewalls of the gate stack, and a spacer disposed above the horizontal portion of the gate encapsulation layer and adjacent to the vertical portion of the gate encapsulation layer. The gate stack has a first layer of high dielectric constant material, a second layer comprising a metal or metal alloy, and a third layer comprising silicon or polysilicon. The gate encapsulation layer has a vertical portion covering the sidewalls of the first, second, and third layers of the gate stack and a horizontal portion covering a portion of the silicon layer that is adjacent to the gate stack.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Applicant: International Business Machines Corporation
    Inventors: RENEE T. MO, Wesley C. Natzle, Vijay Narayanan, Jeffrey W. Sleight
  • Publication number: 20110034000
    Abstract: A method of selectively forming a germanium structure within semiconductor manufacturing processes removes the native oxide from a nitride surface in a chemical oxide removal (COR) process and then exposes the heated nitride and oxide surface to a heated germanium containing gas to selectively form germanium only on the nitride surface but not the oxide surface.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Anthony I. Chou, Toshiharu Furukawa, Steven J. Holmes, Wesley C. Natzle
  • Patent number: 7859013
    Abstract: Disclosed are embodiments of a MOSFET with defined halos that are bound to defined source/drain extensions and a method of forming the MOSFET. A semiconductor layer is etched to form recesses that undercut a gate dielectric layer. A low energy implant forms halos. Then, a COR pre-clean is performed and the recesses are filled by epitaxial deposition. The epi can be in-situ doped or subsequently implanted to form source/drain extensions. Alternatively, the etch is immediately followed by the COR pre-clean, which is followed by epitaxial deposition to fill the recesses. During the epitaxial deposition process, the deposited material is doped to form in-situ doped halos and, then, the dopant is switched to form in-situ doped source/drain extensions adjacent to the halos. Alternatively, after the in-situ doped halos are formed the deposition process is performed without dopants and an implant is used to form source/drain extensions.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Judson R. Holt, Rangarajan Jagannathan, Wesley C. Natzle, Michael R. Sievers, Richard S. Wise
  • Patent number: 7851299
    Abstract: The present invention provides a semiconducting device including a substrate including at least one semiconducting region and isolation regions; a gate structure atop the substrate having a gate dielectric layer positioned on the semiconducting region and a metal layer atop the gate dielectric layer, the gate structure having a width equal to or greater than the width of the at least one semiconducting region; and a contact structure including a base having a first width equal to the width of the gate structure and an upper surface having a second width, wherein the first width is greater than the second width. In one embodiment, the contact structure includes a polysilicon conductor and dielectric spacers, wherein each spacer of the dielectric spacer abuts a sidewall of the polysilicon conductor. In another embodiment, the contact structure includes a polysilicon conductor having a tapered sidewall.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventor: Wesley C. Natzle
  • Publication number: 20100244206
    Abstract: A method of forming a device includes providing a substrate, forming an interfacial layer on the substrate, depositing a high-k dielectric layer on the interfacial layer, depositing an oxygen scavenging layer on the high-k dielectric layer and performing an anneal. A high-k metal gate transistor includes a substrate, an interfacial layer on the substrate, a high-k dielectric layer on the interfacial layer and an oxygen scavenging layer on the high-k dielectric layer.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: International Business Machines Corporation
    Inventors: Huiming Bu, Michael P. Chudzik, Wei He, Rashmi Jha, Young-Hee Kim, Siddarth A. Krishnan, Renee T. Mo, Naim Moumen, Wesley C. Natzle
  • Publication number: 20090250782
    Abstract: The present invention provides a semiconducting device including a substrate including at least one semiconducting region and isolation regions; a gate structure atop the substrate having a gate dielectric layer positioned on the semiconducting region and a metal layer atop the gate dielectric layer, the gate structure having a width equal to or greater than the width of the at least one semiconducting region; and a contact structure including a base having a first width equal to the width of the gate structure and an upper surface having a second width, wherein the first width is greater than the second width. In one embodiment, the contact structure includes a polysilicon conductor and dielectric spacers, wherein each spacer of the dielectric spacer abuts a sidewall of the polysilicon conductor. In another embodiment, the contact structure includes a polysilicon conductor having a tapered sidewall.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Wesley C. Natzle
  • Publication number: 20090243031
    Abstract: In one embodiment, the present invention provides a method of fabricating a semiconducting device that includes providing a substrate including at least one semiconducting region and at least one oxygen source region; forming an oxygen barrier material atop portions of an upper surface of the at least one oxygen region; forming a high-k gate dielectric on the substrate including the at least one semiconducting region, wherein oxygen barrier material separates the high-k gate dielectric from the at least one oxygen source material; and forming a gate conductor atop the high-k gate dielectric.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wesley C. Natzle, Renee T. Mo, Rashmi Jha, Kathryn T. Schonenberg, Richard A. Conti
  • Publication number: 20090212332
    Abstract: In a first structure, a metal gate portion may be laterally recessed from a substantially vertical surface of a gate conductor thereabove. A cavity is formed between the metal gate portion and a gate spacer. In a second structure, a disposable gate portion is removed after laterally recessing a metal gate portion therebeneath and forming a dielectric layer having a surface coplanar with a top surface of the disposable gate portion. (We have to include the inner spacer without a metal recess). An inner gate spacer is formed over a periphery of the metal gate portion provide a reduced overlap capacitance. In a third structure, a thin dielectric layer is employed to form a cavity next to the metal gate portion in conjunction with the inner gate spacer to provide reduced overlap capacitance.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xinlin Wang, Michael A. Gribelyuk, Wesley C. Natzle
  • Publication number: 20090159934
    Abstract: A semiconductor structure is fabricated with reduced gate capacitance by thinning of a gate electrode to provide a reduced thickness gate electrode. The gate electrode is thinned after forming a spacer layer adjoining the gate electrode. In addition, the height of the spacer layer may also be reduced. The spacer layer thus has an enhanced horizontal width desired for locating an intrinsic source/drain with respect to an extension region and in particular, an enhanced horizontal width relative to the spacer height. The reduced thickness gate electrode may be fully silicided to provide decreased gate resistance. A raised source/drain layer may be located upon the intrinsic source/drain region. The raised source/drain layer may have a top surface higher than the reduced thickness gate electrode. In addition, the raised source/drain layer may have a top surface higher than the reduced height spacer layer.
    Type: Application
    Filed: November 20, 2008
    Publication date: June 25, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ricky S. Amos, Wesley C. Natzle, Siddhartha Panda, Brian L. Tessier