Patents by Inventor Weston A. Hermann

Weston A. Hermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220158179
    Abstract: Provided herein are electrochemical cells that include a metal sheet adjacent to a solid-state Li ion-conducting electrolyte in a manner that isolates a Li metal negative electrode from exposure to either, or both, a liquid electrolyte or a gel electrolyte used as a catholyte in the positive electrode. Some of the electrochemical cells include a series of electrochemical stacks, which may be stacked in a variety of configurations including configurations that share a Li metal negative electrode.
    Type: Application
    Filed: February 28, 2020
    Publication date: May 19, 2022
    Inventors: Weston HERMANN, Jesse SHAPIRO, Joseph SALVI
  • Patent number: 11081739
    Abstract: A battery pack has an enclosure that contains a plurality of batteries and conductors and that resists the flow of fluid between an interior of the enclosure and an exterior of the enclosure. An exit vent formed in the enclosure at a first location allows exhaust gas to flow from the interior of the enclosure to the exterior of the enclosure. A fill port formed in the enclosure at a second location, in an impermeable state, prevent ingress of fluid from an exterior of the enclosure to an interior of the disclosure. The fill port, in a permeable state achieved by receipt of a perforation tool there through, permits ingress of a sufficient amount of a thermal-control liquid into the enclosure through the fill port to terminate a runaway thermal event in the battery pack. A fill port coupler having a passageway and an externally accessible port may be included.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: August 3, 2021
    Assignee: Tesla, Inc.
    Inventor: Weston A. Hermann
  • Patent number: 10534028
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: January 14, 2020
    Assignee: Tesla, Inc.
    Inventors: Sarah G. Stewart, Christopher Dangler, Clay H. Kishiyama, Weston A. Hermann, Scott I. Kohn, Kurt R. Kelty
  • Patent number: 10158115
    Abstract: In an example, the present invention provides a method for forming a film of material for a solid state battery or other energy storage device. The method includes providing a first precursor species, and providing a second precursor species. The method also includes transferring the first precursor species through a first nozzle and outputting the first precursor species in a first molecular form and transferring the second precursor species through a second nozzle and outputting the second precursor species in a second molecular form. The method includes causing formation of first plurality of particles, ranging from about first diameter to about a second diameter, by intermixing the first precursor species with the second precursor species. The method also includes cooling the first plurality of particles at a rate of greater than 100° C./s to a specified temperature.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: December 18, 2018
    Assignee: QuantumScape Corporation
    Inventors: Bradley O. Stimson, Weston A. Hermann, David E. Berkstresser, Tim Holme, Arnold Allenic
  • Publication number: 20180219266
    Abstract: A battery pack has an enclosure that contains a plurality of batteries and conductors and that resists the flow of fluid between an interior of the enclosure and an exterior of the enclosure. An exit vent formed in the enclosure at a first location allows exhaust gas to flow from the interior of the enclosure to the exterior of the enclosure. A fill port formed in the enclosure at a second location, in an impermeable state, prevent ingress of fluid from an exterior of the enclosure to an interior of the disclosure. The fill port, in a permeable state achieved by receipt of a perforation tool there through, permits ingress of a sufficient amount of a thermal-control liquid into the enclosure through the fill port to terminate a runaway thermal event in the battery pack. A fill port coupler having a passageway and an externally accessible port may be included.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Applicant: Tesla, Inc.
    Inventor: Weston A. Hermann
  • Patent number: 9941555
    Abstract: A perforation tool for a battery enclosure system of a vehicle battery pack, comprising: an engaging tip configured to mechanically breach a thermal-control-agent-retaining enclosure of a traction battery pack including a plurality of interconnected batteries with the enclosure reinforced for mechanical protection of the batteries when installed in an electric vehicle; a port for receiving a thermal-control agent having a pressure in a range of about 5-100 psi; and a housing, coupled to the tip and to the port, wherein the tip includes an aperture and wherein the housing includes a channel communicating the port to the aperture wherein the pressurized thermal-control agent is produced at the tip at about the pressure.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: April 10, 2018
    Assignee: TESLA, INC.
    Inventor: Weston A. Hermann
  • Publication number: 20170074918
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Applicant: Tesla Motors, Inc.
    Inventors: Sarah G. Stewart, Christopher Dangler, Clay H. Kishiyama, Weston A. Hermann, Scott I. Kohn, Kurt R. Kelty
  • Patent number: 9506990
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: November 29, 2016
    Assignee: TESLA MOTORS, INC.
    Inventors: Sarah G. Stewart, Christopher Dangler, Clay H. Kishiyama, Weston A. Hermann, Scott I. Kohn, Kurt R. Kelty
  • Publication number: 20160093874
    Abstract: In an example, the present invention provides a method for forming a film of material for a solid state battery or other energy storage device. The method includes providing a first precursor species, and providing a second precursor species. The method also includes transferring the first precursor species through a first nozzle and outputting the first precursor species in a first molecular form and transferring the second precursor species through a second nozzle and outputting the second precursor species in a second molecular form. The method includes causing formation of first plurality of particles, ranging from about first diameter to about a second diameter, by intermixing the first precursor species with the second precursor species. The method also includes cooling the first plurality of particles at a rate of greater than 100° C./s to a specified temperature.
    Type: Application
    Filed: June 6, 2014
    Publication date: March 31, 2016
    Applicant: QUANTUMSCAPE CORPORATION
    Inventors: Bradley O. STIMSON, Weston A. HERMANN, David E. BERKSTRESSER, Tim HOLME, Arnold ALLENIC
  • Patent number: 9257729
    Abstract: A controller identifies a condition of a hazardous internal short by comparing patterns of series element voltages to the last known balance condition of the series elements. If the loaded or resting voltage of one or more contiguous series elements uniformly drop from the previously known condition by an amount consistent with an over-current condition, an over-current internal short circuit fault is registered. The desired response is to prevent the affected series elements from heating to a hazardous temperature by summoning the maximum heat rejection capability of the system until the short ceases and the affected elements cool, the cooling function is no longer able to operate due to low voltage, or the affected series string has drained all of its energy through the short. Also includes are responses that allow the battery pack to continue to power the cooling system even though it may enter an over-discharged state.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 9, 2016
    Assignee: Tesla Motors, Inc.
    Inventors: Weston A. Hermann, Scott I. Kohn
  • Publication number: 20150039255
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Application
    Filed: September 29, 2014
    Publication date: February 5, 2015
    Inventors: Sarah G. STEWART, Christopher Dangler, Clay H. Kishiyama, Weston A. Hermann, Scott I. Kohn, Kurt R. Kelty
  • Publication number: 20140088809
    Abstract: A controller identifies a condition of a hazardous internal short by comparing patterns of series element voltages to the last known balance condition of the series elements. If the loaded or resting voltage of one or more contiguous series elements uniformly drop from the previously known condition by an amount consistent with an over-current condition, an over-current internal short circuit fault is registered. The desired response is to prevent the affected series elements from heating to a hazardous temperature by summoning the maximum heat rejection capability of the system until the short ceases and the affected elements cool, the cooling function is no longer able to operate due to low voltage, or the affected series string has drained all of its energy through the short. Also includes are responses that allow the battery pack to continue to power the cooling system even though it may enter an over-discharged state.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Applicant: Tesla Motors, Inc.
    Inventors: Weston A. Hermann, Scott I. Kohn
  • Publication number: 20120111445
    Abstract: A perforation tool for a battery enclosure system of a vehicle battery pack, comprising: an engaging tip configured to mechanically breach a thermal-control-agent-retaining enclosure of a traction battery pack including a plurality of interconnected batteries with the enclosure reinforced for mechanical protection of the batteries when installed in an electric vehicle; a port for receiving a thermal-control agent having a pressure in a range of about 5-100 psi; and a housing, coupled to the tip and to the port, wherein the tip includes an aperture and wherein the housing includes a channel communicating the port to the aperture wherein the pressurized thermal-control agent is produced at the tip at about the pressure.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: TESLA MOTORS, INC.
    Inventor: Weston A. Hermann
  • Publication number: 20120111444
    Abstract: An apparatus and method providing for coolant agent ingress of a high energy density battery enclosure during an internal thermal event. A solution includes a specialized battery enclosure and, in some embodiments, an associated vehicle structure providing a normally closed, pressure activated fill port. Preferably the fill port is positioned so an operator of the fill port is clear from any hot gases exiting from the enclosure.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston A. Hermann, Kurt R. Kelty
  • Publication number: 20120037310
    Abstract: The system includes a module fixture supporting a plurality of elements, the module fixture defining a plurality of bonding wells with each bonding well accepting a first portion of one or more of the elements with the module fixture including one or more apertures communicated with one or more of the bonding wells with the bonding wells having a nominal depth; and a dispensing system, coupled to the module fixture, for dispensing a high-wettability adhesive into each the bonding well and surrounding each the element substantially filling the bonding well up to the nominal depth without significant overfill, the adhesive being selectively curable upon application of a curing modality; and a curing structure for selectively exposing the adhesive to the curing modality as the adhesive emerges from the apertures during dispensation of the adhesive.
    Type: Application
    Filed: September 25, 2011
    Publication date: February 16, 2012
    Applicant: TESLA MOTORS, INC.
    Inventors: Weston A. Hermann, Scott I. Kohn
  • Publication number: 20110298417
    Abstract: An apparatus and method for identifying a presence of a short circuit in a battery pack. A fault-detection apparatus for a charging system that rapidly charges a collection of interconnected lithium ion battery cells, the safety system includes a data-acquisition system for receiving a set of data parameters from the collection while the charging system is actively charging the collection; a monitoring system evaluating the set of data parameters to identify a set of anomalous conditions; and a controller comparing the set of anomalous conditions against a set of predetermined profiles indicative of an internal short in one or more cells of the collection, the controller establishing an internal-short state for the collection when the comparing has a predetermined relationship to the set of predetermined profiles.
    Type: Application
    Filed: December 16, 2010
    Publication date: December 8, 2011
    Applicant: Tesla Motors, Inc.
    Inventors: Sarah G. Stewart, Christopher Dangler, Clay H. Kishiyama, Weston A. Hermann, Scott I. Kohn, Kurt R. Kelty
  • Publication number: 20110214808
    Abstract: Methods and systems for decreasing costs (expense, mass, and/or cure time) associated with use of adhesives when assembling modularized components, particularly for assemblies having many elements such as for example battery modules used in electric vehicles. The methods and systems enable use of high-wettability adhesives (defined generally in this application as low viscosity and/or low surface tension adhesives) for assembling such modularized components.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 8, 2011
    Applicant: Tesla Motors, Inc.
    Inventors: Weston A. Hermann, Scott I. Kohn
  • Patent number: 7939192
    Abstract: A battery module for use in an electric vehicle is disclosed. The battery module includes a plurality of cells arranged in a predetermined pattern within the module. The battery module also includes an optical pyrometer arranged inside the module. The optical pyrometer is installed within the module after being tuned to detect a predetermined frequency or band of frequencies. The pyrometer will be used to detect an increase in short wave radiation density from one of the battery cells within the module wherein that battery cell has a temperature above a predetermined threshold. The optical pyrometer will be used to communicate an electric signal to a control system of the electric vehicle wherein that control system will implement a predetermined mitigation process to contain the thermal event of that one cell within the battery module.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: May 10, 2011
    Assignee: Tesla Motors, Inc.
    Inventor: Weston A. Hermann
  • Publication number: 20080315839
    Abstract: A battery module for use in an electric vehicle is disclosed. The battery module includes a plurality of cells arranged in a predetermined pattern within the module. The battery module also includes an optical pyrometer arranged inside the module. The optical pyrometer is installed within the module after being tuned to detect a predetermined frequency or band of frequencies. The pyrometer will be used to detect an increase in short wave radiation density from one of the battery cells within the module wherein that battery cell has a temperature above a predetermined threshold. The optical pyrometer will be used to communicate an electric signal to a control system of the electric vehicle wherein that control system will implement a predetermined mitigation process to contain the thermal event of that one cell within the battery module.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 25, 2008
    Inventor: Weston A. Hermann