Patents by Inventor Wilfried J. Mortier

Wilfried J. Mortier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8658844
    Abstract: Catalytic structures are provided comprising octahedral tunnel lattice manganese oxides ion-exchanged with metal cations or mixtures thereof. The structures are useful as catalysts for the oxidation of alkanes and may be prepared by treating layered manganese oxide under highly acidic conditions, optionally drying the treated product, and subjecting it to ion exchange.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Helge Jaensch, Wilfried J. Mortier
  • Publication number: 20130317272
    Abstract: Catalytic structures are provided comprising octahedral tunnel lattice manganese oxides ion-exchanged with metal cations or mixtures thereof. The structures are useful as catalysts for the oxidation of alkanes and may be prepared by treating layered manganese oxide under highly acidic conditions, optionally drying the treated product, and subjecting it to ion exchange.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 28, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Helge Jaensch, Wilfried J. Mortier
  • Patent number: 8470289
    Abstract: Catalytic structures are provided comprising octahedral tunnel lattice manganese oxides ion-exchanged with metal cations or mixtures thereof. The structures are useful as catalysts for the oxidation of alkanes and may be prepared by treating layered manganese oxide under highly acidic conditions, optionally drying the treated product, and subjecting it to ion exchange.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Helge Jaensch, Wilfried J. Mortier
  • Patent number: 7914760
    Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: March 29, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
  • Publication number: 20100324326
    Abstract: A catalyst for the oxidation of an alkane, alkene or mixtures thereof. The catalyst includes a mixed-metal oxide having the formula MoaVbNbcTedSbeOf wherein, when a=1, b=0.01 to 1.0, c=0.01 to 1.0, d=0.01 to 1.0, e=0.01 to 1.0, and f is dependent upon the oxidation state of the other elements, the catalyst further characterized by having at least two crystal phases, the first crystal phase being an orthorhombic M1 phase and the second crystal phase being a pseudo-hexagonal M2 phase, the orthorhombic M1 phase present in an amount between greater than 60 weight percent to less than 90 weight percent. The catalysts disclosed herein exhibit a chemisorption of NH3 of less than about 0.2 mmole per gram of metal oxide.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, James C. Vartuli, Wilfried J. Mortier, Jihad M. Dakka, Robert C. Lemon
  • Patent number: 7807601
    Abstract: A catalyst for the oxidation of an alkane, alkene or mixtures thereof. The catalyst includes a mixed-metal oxide having the formula MoaVbNbcTedSbeOf wherein, when a=1, b=0.01 to 1.0, c=0.01 to 1.0, d=0.01 to 1.0, e=0.01 to 1.0, and f is dependent upon the oxidation state of the other elements, the catalyst further characterized by having at least two crystal phases, the first crystal phase being an orthorhombic M1 phase and the second crystal phase being a pseudo-hexagonal M2 phase, the orthorhombic M1 phase present in an amount between greater than 60 weight percent to less than 90 weight percent. The catalysts disclosed herein exhibit a chemisorption of NH3 of less than about 0.2 mmole per gram of metal oxide.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 5, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, James C. Vartuli, Wilfried J. Mortier, Jihad M. Dakka, Robert C. Lemon
  • Publication number: 20100028679
    Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.
    Type: Application
    Filed: October 8, 2009
    Publication date: February 4, 2010
    Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R.M. Martens, Stephen Nell Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
  • Patent number: 7622624
    Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about 55/45 as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: November 24, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
  • Publication number: 20090042723
    Abstract: A process for preparing a mixed metal oxide catalyst. The process includes the steps of admixing metal compounds, at least one of which is an oxygen containing compound, and at least one solvent to form a solution, removing the solvent from the solution to obtain a catalyst precursor, calcining the catalyst precursor at a temperature from about 350° C. to about 850° C. under a gaseous atmosphere comprising CO2, and forming a mixed-metal oxide catalyst. A process for reducing the formation of tellurium metal in a mixed metal oxide catalyst including tellurium is also provided.
    Type: Application
    Filed: February 5, 2008
    Publication date: February 12, 2009
    Inventors: Kun Wang, Jihad Mohammed Dakka, James C. Vartuli, Wilfried J. Mortier, Robert C. Lemon
  • Publication number: 20090023972
    Abstract: Catalytic structures are provided comprising octahedral tunnel lattice manganese oxides ion-exchanged with metal cations or mixtures thereof. The structures are useful as catalysts for the oxidation of alkanes and may be prepared by treating layered manganese oxide under highly acidic conditions, optionally drying the treated product, and subjecting it to ion exchange.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 22, 2009
    Inventors: Helge Jaensch, Wilfried J. Mortier
  • Publication number: 20080161602
    Abstract: A catalyst for the oxidation of an alkane, alkene or mixtures thereof. The catalyst includes a mixed-metal oxide having the formula MoaVbNbcTedSbeOf wherein, when a=1, b=0.01 to 1.0, c=0.01 to 1.0, d=0.01 to 1.0, e=0.01 to 1.0, and f is dependent upon the oxidation state of the other elements, the catalyst further characterized by having at least two crystal phases, the first crystal phase being an orthorhombic M1 phase and the second crystal phase being a pseudo-hexagonal M2 phase, the orthorhombic M1 phase present in an amount between greater than 60 weight percent to less than 90 weight percent. The catalysts disclosed herein exhibit a chemisorption of NH3 of less than about 0.2 mmole per gram of metal oxide.
    Type: Application
    Filed: November 30, 2007
    Publication date: July 3, 2008
    Inventors: Kun Wang, James C. Vartuli, Wilfried J. Mortier, Jihad M. Dakka, Robert C. Lemon
  • Patent number: 7345213
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: March 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Patent number: 7094389
    Abstract: A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 22, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld M. Mertens, Karl G. Strohmaier, Richard B. Hall, Thomas Herman Colle, Mobae Afeworki, Antonie J. Bons, Wilfried J. Mortier, Chris Kliewer, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder
  • Patent number: 7074384
    Abstract: A new family of crystalline molecular sieves is described having a characteristic XRD pattern as illustrated in FIG. 1, and having three sharp peaks at 2? (CuK?) of 8.82, 12.44, and 23.01.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Maria Mertens, Johan Adriaan Martens, Raman Rayishankar, Christine Eva Antiona Kirschhock, Pierre August Jacobs, Antonie Jan Bons, Wilfried J. Mortier
  • Patent number: 6979756
    Abstract: Disclosed is a method of heat treating a molecular sieve. The method comprises providing a template-containing molecular sieve, heating the molecular sieve under conditions effective to remove a portion of the template from the molecular sieve, and cooling the heated molecular sieve to leave an amount of template effective to cover catalytic sites within the molecular sieve. A catalyst composition is also provided which comprises a molecular sieve having a microporous structure and a binder, wherein between 10 and 90 vol % of the microporous structure is occupied by a material, the material comprising a template or a carbonaceous residue of a template, and the catalyst composition exhibits a Davison Index of not greater than 30.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: December 27, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun C. Fung, Marcel J. G. Janssen, Stephen N. Vaughn, Machteld M. Mertens, Albert Edward Schweizer, Cornelius W. M. Van Oorschot, Luc R. M. Martens, Richard B. Hall, Wilfried J. Mortier, Ronald G. Searle, Yi-Gang Xiong
  • Patent number: 6953767
    Abstract: The present invention relates to a silicoaluminophosphate molecular sieve comprising at least one intergrown phase of molecular sieves having AEI and CHA framework types, wherein said intergrown phase has an AEI/CHA ratio of from about 5/95 to 40/60 as determined by DIFFaX analysis, using the powder X-ray diffraction pattern of a calcined sample of said silicoaluminophosphate molecular sieve. It also relates to methods for its preparation and to its use in the catalytic conversion of methanol to olefins.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: October 11, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, An Verberckmoes, Machteld M. Mertens, Antonie Jan Bons, Wilfried J. Mortier
  • Patent number: 6812372
    Abstract: The present invention relates to a silicoaluminophosphate molecular sieve comprising at least one intergrown phase of molecular sieves having AEI and CHA framework types, wherein said intergrown phase has an AEI/CHA ratio of from about 5/95 to 40/60 as determined by DIFFaX analysis, using the powder X-ray diffraction pattern of a calcined sample of said silicoaluminophosphate molecular sieve. It also relates to methods for its preparation and to its use in the catalytic conversion of methanol to olefins.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: November 2, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, An Verberckmoes, Machteld M. Mertens, Antonie Jan Bons, Wilfried J. Mortier
  • Patent number: 6797852
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: September 28, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Shun C. Fung, Luc R. M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn
  • Publication number: 20040101475
    Abstract: A new family of crystalline molecular sieves is described having a characteristic XRD pattern as illustrated in FIG. 1, and having three sharp peaks at 2&thgr; (CuK&agr;) of 8.82, 12.44, and 23.01.
    Type: Application
    Filed: November 17, 2003
    Publication date: May 27, 2004
    Inventors: Machteld Maria Mertens, Johan Adriaan Martens, Raman Rayishankar, Christine Eva Antiona Kirschhock, Pierre August Jacobs, Antonie Jan Bons, Wilfried J. Mortier
  • Publication number: 20040015030
    Abstract: This invention is directed to a method of making an olefin product from an oxygenate feedstock and a method of protecting catalytic activity of a silicoaluminophosphate molecular sieve. The methods comprise providing a silicoaluminophosphate molecular sieve having catalytic sites within the molecular sieve; shielding the catalytic sites to protect from loss of catalytic activity; and contacting the protected sieve in its activated state with an oxygenate feedstock under conditions effective to produce an olefin product before undesirable loss of catalytic activity. Undesirable loss in catalytic activity occurs when activated molecular sieve contacting the oxygenate feedstock has a methanol uptake index of at least 0.15.
    Type: Application
    Filed: July 9, 2003
    Publication date: January 22, 2004
    Inventors: Marcel J.G. Janssen, Cornelius W.M. Van Oorschot, Shun C. Fung, Luc R.M. Martens, Wilfried J. Mortier, Ronald G. Searle, Machteld M. Mertens, Stephen N. Vaughn