Patents by Inventor William A. Zortman

William A. Zortman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10942215
    Abstract: The various technologies presented herein relate to measuring a signal generated by a die-based test circuit incorporated into an IC and utilizing the measured signal to authenticate the IC. The signal can be based upon a sensor response generated by the test circuit fabricated into the die, wherein the sensor response is based upon a property of the die material. The signal can be compared with a reference value obtained from one or more test circuit(s) respectively located on one or more reference dies, wherein the reference dies are respectively cut from different wafers, and the location at which the reference dies were cut is known. If the measured signal matches the reference value, the die is deemed to be from the same cut location as the dies from which the reference value was obtained. If the measured signal does not match the reference value, the die is not authenticated.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: March 9, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: William A. Zortman, Ryan Helinski, Jason Hamlet
  • Publication number: 20190377024
    Abstract: The various technologies presented herein relate to measuring a signal generated by a die-based test circuit incorporated into an IC and utilizing the measured signal to authenticate the IC. The signal can be based upon a sensor response generated by the test circuit fabricated into the die, wherein the sensor response is based upon a property of the die material. The signal can be compared with a reference value obtained from one or more test circuit(s) respectively located on one or more reference dies, wherein the reference dies are respectively cut from different wafers, and the location at which the reference dies were cut is known. If the measured signal matches the reference value, the die is deemed to be from the same cut location as the dies from which the reference value was obtained. If the measured signal does not match the reference value, the die is not authenticated.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 12, 2019
    Inventors: William A. Zortman, Ryan Helinski, Jason Hamlet
  • Patent number: 10429438
    Abstract: The various technologies presented herein relate to measuring a signal generated by a die-based test circuit incorporated into an IC, and utilizing the measured signal to authenticate the IC. The signal can be based upon a sensor response generated by the test circuit fabricated into the die, wherein the sensor response is based upon a property of the die material. The signal can be compared with a reference value obtained from one or more test circuit(s) respectively located on one or more reference dies, wherein the reference dies are respectively cut from different wafers, and the location at which the reference dies were cut is known. If the measured signal matches the reference value, the die is deemed to be from the same cut location as the dies from which the reference value was obtained. If the measured signal does not match the reference value, the die is not authenticated.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: October 1, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: William A. Zortman, Ryan Helinski, Jason Hamlet
  • Patent number: 10217704
    Abstract: Various technologies for simultaneously making a plurality of modifications to a previously manufactured semiconductor are described herein. A mask layer is applied to a surface of the previously manufactured semiconductor device. A pattern is formed in the mask layer, where the pattern is aligned with a plurality of features of the semiconductor device that are desirably modified. Layers of the semiconductor device are etched based on the pattern to create a plurality of vias that each extend through one or more layers of the semiconductor device to a respective feature of the device. A conducting material is deposited into the vias to form a plurality of conducting plugs. Conducting material may be further deposited on the surface of the semiconductor device to connect plugs to one another and/or connect plugs to surface features of the device, thereby forming a plurality of new connections between features of the semiconductor device.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: February 26, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Randy J. Shul, Jeffry J. Sniegowski, Kurt W. Larson, William A. Zortman
  • Patent number: 9780870
    Abstract: Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 3, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: William A. Zortman, Anthony L. Lentine
  • Patent number: 9632261
    Abstract: An optoelectronic device package and a method for its fabrication are provided. The device package includes a lid die and an active die that is sealed or sealable to the lid die and in which one or more optical waveguides are integrally defined. The active die includes one or more active device regions, i.e. integral optoelectronic devices or etched cavities for placement of discrete optoelectronic devices. Optical waveguides terminate at active device regions so that they can be coupled to them. Slots are defined in peripheral parts of the active dies. At least some of the slots are aligned with the ends of integral optical waveguides so that optical fibers or optoelectronic devices inserted in the slots can optically couple to the waveguides.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: April 25, 2017
    Assignee: Sandia Corporation
    Inventors: William A. Zortman, Michael David Henry, Robert L. Jarecki, Jr.
  • Patent number: 9625785
    Abstract: A photonic device is provided for impressing a modulation pattern on an optical carrier. The device includes a unit in which a photodetector and an optical microresonator are monolithically integrated. The device further includes an optical waveguide evanescently coupled to the optical microresonator and having at least an upstream portion configured to carry at least one optical carrier toward the microresonator. The optical microresonator is tunable so as to resonate with the optical carrier frequency. The optical microresonator and the photodetector are mutually coupled such that in operation, charge carriers photogenerated in the photodetector are injected into the microresonator, where the photocurrent changes the resonant conditions. In some embodiments the device is operable as an optical-to-optical frequency converter. In other embodiments the device is operable as an oscillator.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 18, 2017
    Assignee: Sandia Corporation
    Inventors: William A. Zortman, Anthony L. Lentine
  • Patent number: 9488854
    Abstract: An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: November 8, 2016
    Assignee: Sandia Corporation
    Inventor: William A. Zortman
  • Patent number: 9366822
    Abstract: A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) of each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 14, 2016
    Assignee: Sandia Corporation
    Inventors: Anthony L. Lentine, Rohan Deodatta Kekatpure, William A. Zortman, Daniel J. Savignon
  • Patent number: 9235065
    Abstract: An apparatus for optical modulation is provided. The apparatus includes a modulator structure and a heater structure. The modulator structure comprises a ring or disk optical resonator having a closed curvilinear periphery and a pair of oppositely doped semiconductor regions within and/or adjacent to the optical resonator and conformed to modify the optical length of the optical resonator upon application of a bias voltage. The heater structure comprises a relatively resistive annulus of semiconductor material enclosed between an inner disk and an outer annulus of relatively conductive semiconductor material. The inner disk and the outer annulus are adapted as contact regions for a heater activation current. The heater structure is situated within the periphery of the optical resonator such that in operation, at least a portion of the resonator is heated by radial conductive heat flow from the heater structure.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: January 12, 2016
    Assignee: Sandia Corporation
    Inventor: William A. Zortman
  • Patent number: 9128308
    Abstract: Photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes at least one modulator section and differential drive circuitry. The at least one modulator section includes a P-type layer and an N-type layer forming a PN junction in the modulator section. The differential drive circuitry is electrically coupled to the P-type layer and the N-type layer of the at least one modulator section.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 8, 2015
    Assignee: Sandia Corporation
    Inventors: William A. Zortman, Anthony L. Lentine, Alexander H. Hsia, Michael R. Watts
  • Patent number: 9083460
    Abstract: A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: July 14, 2015
    Assignee: Sandia Corporation
    Inventor: William A. Zortman
  • Patent number: 9081135
    Abstract: A photonic microresonator incorporates a localized heater element within a section of an optical bus waveguide that is in proximity to the resonator structure. The application of an adjustable control voltage to the heater element provides a localized change in the refractive index value of the bus waveguide, compensating for temperature-induced wavelength drift and maintaining a stabilized value of the microresonator's resonant wavelength.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 14, 2015
    Assignee: Sandia Corporation
    Inventors: Adam Jones, William A. Zortman
  • Patent number: 9081215
    Abstract: Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: July 14, 2015
    Assignee: Sandia Corporation
    Inventors: William A. Zortman, Douglas Chandler Trotter, Michael R. Watts
  • Patent number: 9052535
    Abstract: The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive index enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: June 9, 2015
    Assignee: Sandia Corporation
    Inventors: William A. Zortman, Michael R. Watts
  • Patent number: 8947764
    Abstract: An optical device includes a microdisk optical resonator element. The microdisk resonator element is formed on a substrate and has upper and lower portions respectively distal and proximal the substrate. An arcuate semiconductor contact region partially surrounds the microdisk resonator element. A first modulator electrode is centrally formed on the upper portion of the microdisk resonator element, and a second modulator electrode is formed on the arcuate contact region. A laminar semiconductor region smaller in thickness than the microdisk resonator element separates the arcuate contact region from the microdisk resonator element and is formed on the substrate so as to electrically connect the arcuate contact region to the lower portion of the microdisk resonator element.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: February 3, 2015
    Assignee: Sandia Corporation
    Inventors: Christopher DeRose, William A. Zortman