Patents by Inventor William J. Cummings

William J. Cummings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8385714
    Abstract: A method is provided for visual inspection of an array of interferometric modulators in various driven states. This method may include driving multiple columns or rows of interferometric modulators via a single test pad or test lead, such as test pad, and then observing the array for discrepancies between the expected optical output and the actual optical output of the array. This method may particularly include, for example, driving a set of non-adjacent rows or columns to a state different from the intervening rows or columns and then observing the optical output of the array.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 26, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: William J Cummings, Brian J Gally
  • Publication number: 20130038565
    Abstract: This disclosure provides systems, methods and apparatus for touch sensing on a display device. In one aspect, a method is provided for reducing electrical interference on a display including bi-stable display elements and touch sensing elements without a grounded shielding layer between display elements and touch sensing elements. The method may include placing at least a portion of an array of bi-stable display elements in a selected state with display driver circuitry, maintaining the display elements in the selected state, and obtaining a signal from a touch-sensing element using touch sensing driver circuitry different from the display driver circuitry when the display elements remain in the selected state.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Donald J. Elloway, Mark M. Mignard, William J. Cummings, Russel A. Martin
  • Patent number: 8362987
    Abstract: A method and device for manipulating color in a display is disclosed. In one embodiment, a display comprises interferometric display elements formed to have spectral responses that produce white light. In one embodiment, the produced white light is characterized by a standardized white point.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: January 29, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings
  • Publication number: 20130021303
    Abstract: The present disclosure provides systems, methods, and apparatus relating to touch sensing display devices that include a sensing device and a display device. In one aspect, a touch sensing display device can include adaptive addressing architecture to adjust an addressing characteristic based at least in part in a sensing characteristic of a sensing device. In another aspect, a touch sensing display device can include adaptive sensing architecture to adjust a sensing characteristic of a sensing device based at least in part on an addressing characteristic of a display device and/or on an electrical interference characteristic altered by an addressing circuit of the display device.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Russel A. Martin, William J. Cummings
  • Patent number: 8358459
    Abstract: An ornamental display device having an interferometric modulator for displaying an ornamental image. The ornamental device may also have a signal receiver configured to receive an external signal. The ornamental device may further have a processor configured to control an image on the display based on the external signal. The external signal is emitted from a controller configured to control a plurality of ornamental devices to display coordinated images. The ornamental device may have a patterned diffuser formed on a transparent substrate to provide an ornamental image or information. The ornamental device may be a piece of jewelry or an article that may be worn. The image displayed may have an iridescent appearance. A controller may also be used to control images displayed on multiple ornamental device to provide coordinated images based on externals received or pre-programmed images.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: January 22, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J Gally, William J. Cummings
  • Publication number: 20130009855
    Abstract: Embodiments include methods and devices for controlling the spectral profile and color gamut of light produced by an interferometric display. Such devices include illuminating a display with selected wavelengths of light. Embodiments also include a display comprising separate sections that output different predetermined colors of light. Other embodiments include methods of making the aforementioned devices.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Brian J. Gally, William J. Cummings
  • Patent number: 8344377
    Abstract: Optical filter functionality is incorporated into a substrate of a display element thereby decreasing the need for a separate thin film filter and, accordingly, reducing a total thickness of a filtered display element. Filter functionality may be provided by any filter material, such as pigment materials, photoluminescent materials, and opaque material, for example. The filter material may be incorporated in the substrate at the time of creating the substrate or may be selectively diffused in the substrate through a process of masking the substrate, exposing the substrate to the filter material, and heating the substrate in order to diffuse the filter material in the substrate.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: January 1, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings
  • Publication number: 20120249519
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for preventing the edge subpixels of a display from actuating. Some implementations provide a small conductive via inside edge subpixels of a passively-addressed display, such as a microelectromechanical systems (MEMS)-based display. The vias may be configured to make an electrical connection between a movable conductive layer and another conductive layer of the edge subpixel. Electricity may be provided to the active subpixel array by way of these vias in the edge subpixels. The concepts provided herein apply to other types of passively-addressed displays, such as organic light-emitting diode (“OLED”) displays and field emission displays.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 4, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: William J. Cummings
  • Publication number: 20120236042
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for tuning the white point of a display device. In one aspect, a display device includes a set of display elements configured to output light and electronics configured to drive the display elements. Each display element can have an on-state where a reflective surface can be positioned at a distance from a partially reflective surface such that the display element can reflect incident light. Each distance can be dependent on a bias voltage. At least one of the bias voltages for the display elements can be non-zero in the on-state, and one or more of the bias voltages may be adjustable to control a white point of the display device. The electronics can be electrically connected to the display elements to provide the at least one non-zero bias voltage.
    Type: Application
    Filed: August 23, 2011
    Publication date: September 20, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Manu Parmar, Koorosh Aflatooni, William J. Cummings
  • Patent number: 8244092
    Abstract: One embodiment provides a method of testing humidity, comprising: i) determining a property of a device which encloses a plurality of interferometric modulators and ii) determining a relative humidity value or a degree of the relative humidity inside the device based at least in part upon the determined property, wherein the determined property comprises at least one of i) the thickness and width of a seal of the device and ii) adhesive permeability of a component of the device. In one embodiment, the determined property further comprises at least one of the following: i) temperature-humidity combination inside the device, ii) a desiccant capacity inside the device and iii) a device size.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: August 14, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, Lauren Palmateer, Manish Kothari, William J. Cummings
  • Patent number: 8213075
    Abstract: A multi-state light modulator comprises a first reflector. A first electrode is positioned at a distance from the first reflector. A second reflector is positioned between the first reflector and the first electrode. The second reflector is movable between an undriven position, a first driven position, and a second driven position, each having a corresponding distance from the first reflector. In one embodiment, the three positions correspond to reflecting white light, being non-reflective, and reflecting a selected color of light. Another embodiment is a method of making the light modulator. Another embodiment is a display including the light modulator.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: July 3, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, William J Cummings, Brian J Gally
  • Publication number: 20120139976
    Abstract: A multi-state light modulator comprises a first reflector. A first electrode is positioned at a distance from the first reflector. A second reflector is positioned between the first reflector and the first electrode. The second reflector is movable between an undriven position, a first driven position, and a second driven position, each having a corresponding distance from the first reflector. In one embodiment, the three positions correspond to reflecting white light, being non-reflective, and reflecting a selected color of light. Another embodiment is a method of making the light modulator. Another embodiment is a display including the light modulator.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 7, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: CLARENCE CHUI, WILLIAM J. CUMMINGS, BRIAN J. GALLY
  • Publication number: 20120127556
    Abstract: A package structure and method of packaging for an interferometric modulator. A transparent substrate having an interferometric modulator formed thereon is provided. A backplane is joined to the transparent substrate with a seal where the interferometric modulator is exposed to the surrounding environment through an opening in either the backplane or the seal. The opening is sealed after the transparent substrate and backplane are joined and after any desired desiccant, release material, and/or self-aligning monolayer is introduced into the package structure.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 24, 2012
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Brian J. Gally, William J. Cummings, Lauren Palmateer, Philip D. Floyd, Clarence Chui
  • Publication number: 20120098847
    Abstract: This disclosure provides systems, methods and apparatus including computer programs encoded on computer storage media for producing line multiplied images with better visual appearance. The line multiplying is shifted for one of the colors of the display with respect to at least one other color of the display.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Manu Parmar, Jennifer L. Gille, William J. Cummings, Koorosh Aflatooni
  • Publication number: 20120099177
    Abstract: A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 26, 2012
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Jeffrey B. Sampsell, William J. Cummings, Ming-Hau Tung
  • Patent number: 8124434
    Abstract: A package structure and method of packaging for an interferometric modulator. A transparent substrate having an interferometric modulator formed thereon is provided. A backplane is joined to the transparent substrate with a seal where the interferometric modulator is exposed to the surrounding environment through an opening in either the backplane or the seal. The opening is sealed after the transparent substrate and backplane are joined and after any desired desiccant, release material, and/or self-aligning monolayer is introduced into the package structure.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: February 28, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings, Lauren Palmateer, Philip D. Floyd, Clarence Chui
  • Publication number: 20120044563
    Abstract: A display element, such as an interferometric modulator, includes a transparent conductor configured as a first electrode and a movable minor configured as a second electrode. Advantageously, the partial reflector is positioned between the transparent conductor and the movable mirror. Because the transparent conductor serves as an electrode, the partial reflector does not need to be conductive. Accordingly, a greater range of materials may be used for the partial reflector. In addition, a transparent insulative material, such as a dielectric, may be positioned between the transparent conductor and the partial reflector, for example, in order to decrease a capacitance of the display element without changing a gap distance between the partial reflector and the movable minor. Thus, a capacitance of the display element may be reduced without changing the optical characteristics of the display element.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 23, 2012
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: William J. Cummings, Brian J. Gally
  • Patent number: 8115988
    Abstract: An interferometric modulator is formed by a stationary layer and a mirror facing the stationary layer. The mirror is movable between the undriven and driven positions. Landing pads, bumps or spring clips are formed on at least one of the stationary layer and the mirror. The landing pads, bumps or spring clips can prevent the stationary layer and the mirror from contacting each other when the mirror is in the driven position. The spring clips exert force on the mirror toward the undriven position when the mirror is in the driven position and in contact with the spring clips.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: February 14, 2012
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Clarence Chui, William J Cummings, Brian J Gally, Ming-Hau Tung
  • Patent number: 8111445
    Abstract: A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: February 7, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Jeffrey B. Sampsell, William J. Cummings, Ming-Hau Tung
  • Patent number: 8111446
    Abstract: In various embodiments of the invention, an interferometric display device is provided having an external film with a plurality of structures that reduce the field-of-view of the display. These structures may comprise, for example, baffles or non-imaging optical elements such as compound parabolic collectors. The baffles may comprise a plurality of vertically aligned surfaces arranged, e.g., in a grid. In certain preferred embodiments these baffles are opaque or reflective. These vertical surfaces, therefore, can substantially block light from exiting the interferometric display device in a substantially non-perpendicular direction. These vertical surfaces may, however, permit light directed in a substantially vertical direction to exit the display. The non-imaging optical elements, e.g., compound parabolic collectors, redirect light from large incident angles into more normal angles towards the display. As a result, the light reflected by the display to the user is also at a more normal angle.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 7, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings