Patents by Inventor William P. Hettinger

William P. Hettinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6069106
    Abstract: An improved manganese and/or chromium-promoted catalytic process, catalyst and method of manufacture for heavy hydrocarbon conversion, optionally in the presence of nickel and vanadium on the catalyst and in the feed stock, to produce lighter molecular weight fractions, including lower olefins and higher isobutane than normally produced. This process is based on the discovery that two "magnetic hook" elements, namely manganese and chromium, previously employed as magnetic enhancement agents to facilitate removal of old catalyst, or to selectively retain expensive catalysts, can also themselves function as selective cracking catalysts, particularly when operating on feeds containing significant amounts of nickel and vanadium, and especially where economics require operating with high nickel- and vanadium-contaminated and containing catalysts.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: May 30, 2000
    Inventor: William P Hettinger, Jr.
  • Patent number: 5746321
    Abstract: Optimized utilization of combinations of fluid catalyst magnetic separator, classifier, and/or attriter can be used to achieve lower catalyst cost, and better catalyst activity and selectivity through control of metal-on-catalyst, particle size and particle size distribution. This process is especially useful when processing high metal-containing feedstocks. This provides a catalyst recovery unit (RCU.TM.) ancillary to an FCC or similar unit.
    Type: Grant
    Filed: July 27, 1995
    Date of Patent: May 5, 1998
    Assignee: Ashland Inc.
    Inventors: William P. Hettinger, Jr., Howard F. Moore, Terry L. Goolsby, A. V. Peppard
  • Patent number: 5641395
    Abstract: An improved "magnetic hook"-promoted catalytic process, catalyst and method of manufacture for heavy hydrocarbon conversion, optionally in the presence of nickel and vanadium on the catalyst and in the feed stock to produce lighter molecular weight fractions, including more gasoline, lower olefins and higher isobutane than normally produced. This process is based on the discovery that two "magnetic hook" elements, namely manganese and chromium, previously employed as magnetic enhancement agents to facilitate removal of old catalyst, or to selectively retain expensive catalysts, can also themselves function as selective cracking catalysts, particularly when operating on feeds containing significant amounts of nickel and vanadium, and especially where economics require operating with high nickel- and vanadium-contaminated and containing catalysts.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: June 24, 1997
    Assignees: Ashland Inc., OrganoCat, Inc.
    Inventors: William P. Hettinger, Jr., Sharon L. Mayo
  • Patent number: 5636747
    Abstract: Optimized utilization of combinations of fluid catalyst magnetic separator, classifier, and/or attriter can be used to achieve lower catalyst cost, and better catalyst activity and selectivity through control of metal-on-catalyst, particle size and particle size distribution. This process is especially useful when processing high metal-containing feedstocks. This provides a catalyst recovery unit (RCU.TM.) ancillary to an FCC or similar unit.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: June 10, 1997
    Assignee: Ashland Inc.
    Inventors: William P. Hettinger, Jr., Howard F. Moore, Terry L. Goolsby, A. V. Peppard
  • Patent number: 5614164
    Abstract: Producing carbon fiber precursors and carbonized fibers comprise by treating a thin film of catalytic pitch at elevated temperature conditions, treating the resulting heavy isotropic pitch by agitating with an inert gas under elevated temperature conditions to form a mesophase pitch, forming green fibers from said mesophase pitch, stabilizing and optionally carbonizing said green fibers to obtain the desired product.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: March 25, 1997
    Assignee: Ashland Inc.
    Inventors: Michael B. Sumner, William P. Hettinger
  • Patent number: 5538624
    Abstract: An improved catalytic process for heavy hydrocarbon conversion (usually but not necessarily in the presence of nickel and vanadium in the feedstock and on the catalyst) to produce lighter and selective molecular weight fractions. This process is specifically targeted as a means of retaining specialty high-valued, preferably microspherical additives (SHVA) which assist in attaining preferred conversion products such as gasoline, especially the recent gasolines meeting compositional requirements of "Reformulated Fuel".Selective magnetic retention of these high-cost specialty additives can be achieved by incorporating into them selective magnetic moieties, preferably manganese, the heavy rare earths and superparamagnetic iron. Selective retention is achieved by passing spent or regenerated catalyst containing small amounts of these SHVAs through a magnetic separator, and selectively recycling them back to the circulating catalyst.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: July 23, 1996
    Assignee: Ashland Inc.
    Inventor: William P. Hettinger
  • Patent number: 5393412
    Abstract: Optimized utilization of combinations of fluid catalyst magnetic separator, classifier, and/or attriter can be used to achieve lower catalyst cost, and better catalyst activity and selectivity through control of metal-on-catalyst, particle size and particle size distribution. This process is especially useful when processing high metal-containing feedstocks. This provides a catalyst recovery unit (RCU.TM.) ancillary to an FCC or similar unit.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: February 28, 1995
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 5364827
    Abstract: By continuously or intermittently adding amounts of magnetically active moieties, e.g. iron compounds, over time so that the moiety deposits on a catalyst or sorbent in a fluid catalytic cracker or similar circulating hydrocarbon conversion unit, older catalyst, being more magnetic, can be readily separated from catalyst which has been in the system a shorter time. Separation is readily accomplished by passing the catalyst and/or sorbent through a magnetic field and discarding the more magnetic 50% by wt. or more preferably 20% by wt., while recycling the remainder back to the hydrocarbon conversion unit.
    Type: Grant
    Filed: June 8, 1993
    Date of Patent: November 15, 1994
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Roger M. Benslay
  • Patent number: 5328594
    Abstract: This invention relates to an improved catalytic process for carrying out heavy hydrocarbon conversion, usually, but not necessarily, in the presence of nickel and vanadium on the catalyst and in the feedstock, by catalytic cracking gas oils and heavy carbometallic oils to lighter molecular weight fractions. The process is facilitated by the continuous addition of one or more heavy rare earth additives, including gadolinum, terbium, dysprosium, holmium, erbium, and thulium, all having exceptionally high paramagnetic properties, which as they accumulate on aged catalyst, are used to achieve enhanced magnetic separation of aged catalyst. These additives are unusual in that they not only act dramatically as magnetic hooks to assist in removing old, nickel and vanadium poisoned catalyst, but also act to achieve increased activity and improve selectivity of the remaining catalyst, and of equal importance, tend to resist catalyst deactivation.
    Type: Grant
    Filed: December 7, 1992
    Date of Patent: July 12, 1994
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 5316654
    Abstract: There are provided improved processes for the manufacture of enriched pitches, carbon fiber precursors, carbon fibers, and graphite fibers. The improvement comprises employing an elevated wiped-film evaporator in a wiped-film evaporator system comprising the wiped-film evaporator and a means for recovering enriched pitch, such as a positive displacement pump, to form an enriched pitch from catalytic pitch and regulating the operating conditions of the wiped-film evaporator system to provide the desired enriched pitch. The wiped-film evaporator is located a specific distance above the means for recovering enriched pitch. The vertical distance between the outlet of the wiped-film evaporator and the inlet of the means for recovering enriched pitch is within the range of about 10 feet to about 40 feet, preferably about 20 feet to about 40 feet.
    Type: Grant
    Filed: September 13, 1985
    Date of Patent: May 31, 1994
    Inventors: Donald C. Berkebile, deceased, Catherine Berkebile, Administratrix, Donald M. Lee, Larry D. Veneziano, Joseph J. Lauer, Roy E. Booth, William P. Hettinger, Willard Jones
  • Patent number: 5238672
    Abstract: Producing carbon fiber precursors and carbonized fibers comprise by treating a thin film of catalytic pitch at elevated temperature conditions, treating the resulting heavy isotropic pitch by agitating with an inert gas under elevated temperature conditions to form a mesophase pitch, forming green fibers from said mesophase pitch, stabilizing and optionally carbonizing said green fibers to obtain the desired product.
    Type: Grant
    Filed: June 20, 1989
    Date of Patent: August 24, 1993
    Assignee: Ashland Oil, Inc.
    Inventors: Michael B. Sumner, William P. Hettinger
  • Patent number: 5230869
    Abstract: By continuously or intermittently adding amounts of magnetically active moieties, e.g. iron compounds, over time so that the moiety deposits on a catalyst or sorbent in a fluid catalytic cracker or similar circulating hydrocarbon conversion unit, older catalyst, being more magnetic, can be readily separated from catalyst which has been in the system a shorter time. Separation is readily accomplished by passing the catalyst and/or sorbent through a magnetic field and discarding the more magnetic 50% by wt. or more preferably 20% by wt., while recycling the remainder back to the hydrocarbon conversion unit.
    Type: Grant
    Filed: October 4, 1991
    Date of Patent: July 27, 1993
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Roger M. Benslay
  • Patent number: 5198098
    Abstract: An improved catalytic process for heavy hydrocarbon conversion, (usually, but not necessarily, in the presence of nickel and vanadium on the catalyst and in the feedstock.) to produce lighter molecular weight fractions. Manganese, which has paramagnetic properties, is added so it progressively accumulates on aged catalyst, and enhances magnetic separation of aged catalyst, to increase activity and improve selectivity of remaining catalyst which is recycled. Manganese acts as a "magnetic hook" to separate more magnetic, older, less catalytically active and less selective, higher-metals-containing catalyst particulates from less-magnetically-active, lower-metal-containing, more catalytically active and selective catalysts fractions, which are then recycled back to the unit.
    Type: Grant
    Filed: October 19, 1990
    Date of Patent: March 30, 1993
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 5190635
    Abstract: Improved catalytic process for carrying out heavy hydrocarbon conversion in the presence of metal on the catalyst and in the feedstock, by catalytic cracking such heavy carbometallic oils to lighter molecular weight fractions. The discovery of a ferro/superparamagnetic component of older catalyst, which when present, can be employed to achieve enhanced magnetic separation of aged catalyst. This invention utilizes this property to enhance separation of more magnetically active, older, less catalytically active and selective, higher metals-containing catalyst particulates from less magnetically active, lower metal containing particulates. The more catalytically active and selective catalysts fractions, are then recycled back to the process.
    Type: Grant
    Filed: October 17, 1991
    Date of Patent: March 2, 1993
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 5171424
    Abstract: This invention relates to an improved catalytic process for carrying out heavy hydrocarbon conversion, usually, but not necessarily, in the presence of nickel and vanadium on the catalyst and in the feedstock, by catalytic cracking gas oils and heavy carbometallic oils to lighter molecular weight fractions. The process is facilitated by the continuous addition of one or more heavy rare earth additives, including gadolinum, terbium, dysprosium, holmium, erbium, and thulium, all having exceptionally high paramagnetic properties, which as they accumulate on aged catalyst, are used to achieve enhanced magnetic separation of aged catalyst. These additives are unusual in that they not only act dramatically as magnetic hooks to assist in removing old, nickel and vanadium poisoned catalyst, but also act to achieve increased activity and improve selectivity of the remaining catalyst, and of equal importance, tend to resist catalyst deactivation.
    Type: Grant
    Filed: October 22, 1990
    Date of Patent: December 15, 1992
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 5147527
    Abstract: One embodiment is an improved process for economically converting carbo-metallic oils by means of catalytic particulates into lighter products, wherein a portion of the particulates is withdrawn and passed through a high strength magnetic field of at least 1 KG and field grandients of at least 10 KG/inch while conveyed on an electrostatic conducting belt to enable separation of the mass of particulates by inertia into at least two fractions; one of which has, in the case of catalyst, higher activity and lower metals content and is recycled back to the unit; a second higher metals, lower activity catalyst which is disposed of or treated for recovery of metals; and optimally, intermediate fraction which can be disposed of, or first treated to remove metals, and then chemically reactivated and returned to the unit.
    Type: Grant
    Filed: April 3, 1989
    Date of Patent: September 15, 1992
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 5106486
    Abstract: By continuously or intermittently adding amounts of magnetically active moieties, e.g. iron compounds, over time so that the moiety deposits on a catalyst or sorbent in a fluid catalytic cracker or similar circulating hydrocarbon conversion unit, older catalyst, being more magnetic, can be readily separated from catalyst which has been in the system a shorter time. Separation is readily accomplished by passing the catalyst and/or sorbent through a magnetic field and discarding the more magnetic 50% by wt. or more preferably 20% by wt., while recycling the remainder back to the hydrocarbon conversion unit.
    Type: Grant
    Filed: February 9, 1990
    Date of Patent: April 21, 1992
    Assignee: Ashland Oil, Inc.
    Inventor: William P. Hettinger
  • Patent number: 4996037
    Abstract: There are provided improved processes for the manufacture of enriched pitches, carbon fiber precursors, carbon fibers, and graphite fibers. The improvement comprises employing an elevated wiped-film evaporator in a wiped-film evaporator system comprising the wiped-film evaporator and a means for recovering enriched pitch, such as a positive displacement pump, to form an enriched pitch from catalytic pitch and regulating the operating conditions of the wiped-film evaporator system to provide the desired enriched pitch. The wiped-film evaporator is located a specific distance above the means for recovering enriched pitch. The vertical distance between the outlet of the wiped-film evaporator and the inlet of the means for recovering enriched pitch is within the range of about 10 feet to about 40 feet, preferably about 20 feet to about 40 feet.
    Type: Grant
    Filed: March 12, 1986
    Date of Patent: February 26, 1991
    Inventors: Donald C. Berkebile, Donald M. Lee, Larry D. Veneziano, Joseph J. Lauer, Roy E. Booth, William P. Hettinger
  • Patent number: 4927620
    Abstract: Disclosed herein is an improved pitch for making readily stabilizable, substantially nonmesophasic carbon fibers. The pitch has a softening point of about 250.degree. C. (480.degree. F.) or above and is produced from an unoxidized thermal petroleum pitch by selectively reducing or eliminating a portion of the low molecular weight materials in a very short period of time so that the tendency to produce mesophase pitch is eliminated or reduced and so that the chemical integrity of the components of the higher molecular weight fractions is preserved as much as possible. Also disclosed is a method of producing carbon fibers therefrom and rovings or mats from such fibers.
    Type: Grant
    Filed: October 21, 1985
    Date of Patent: May 22, 1990
    Assignee: Ashland Oil, Inc.
    Inventors: Clifford Ward, Eugene Chao, Roy E. Booth, Frank H. Turrill, Robert H. Wombles, John W. Newman, William P. Hettinger, Jr.
  • Patent number: RE35046
    Abstract: By continuously or intermittently adding amounts of magnetically active moieties, e.g. iron compounds, over time so that the moiety deposits on a catalyst or sorbent in a fluid catalytic cracker or similar circulating hydrocarbon conversion unit, older catalyst, being more magnetic, can be readily separated from catalyst which has been in the system a shorter time. Separation is readily accomplished by passing the catalyst and/or sorbent through a magnetic field and discarding the more magnetic 50% by wt. or more preferably 20% by wt., while recycling the remainder back to the hydrocarbon conversion unit.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: October 3, 1995
    Inventors: William P. Hettinger, Jr., Roger M. Benslay