Patents by Inventor William W. Morey

William W. Morey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9557490
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: January 31, 2017
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20160097904
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: November 25, 2015
    Publication date: April 7, 2016
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 9198581
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: December 1, 2015
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20150045645
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: September 18, 2014
    Publication date: February 12, 2015
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20130148933
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: November 26, 2012
    Publication date: June 13, 2013
    Applicant: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8320723
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20110123154
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Applicant: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7881573
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20100014810
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 21, 2010
    Applicant: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7599588
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: October 6, 2009
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7142749
    Abstract: A system and method for wavelength division multiplexing and demultiplexing with broadened and flattened passband profiles are disclosed. A spectral modifying element may be used to broaden and flatten the passband profile of associated multiple wavelength optical signals and spectral components. The system preferably includes a light focusing device and a diffraction grating having a direction of dispersion. The spectral modify element primarily transforms or broadens and flattens optical signals in only the direction of dispersion of the associated diffraction grating.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: November 28, 2006
    Assignee: Finisar Corporation
    Inventors: William W. Morey, Xuegong Deng, James W. Horwitz, Jie Qiao
  • Patent number: 7103244
    Abstract: A DWDM add/drop system for use in optical communication system is disclosed. Using semiconductor fabrication techniques, a plurality of waveguide arrays and signal carriers are substantially symmetrically arranged about an optical axis of the system. Electrode heaters are provided proximate junctions created at the intersections of selected waveguides. Using the heaters, portions of optical signals may be redirected to other waveguides. In addition, the heaters may be used to attenuate or otherwise modify signals in the waveguides. The waveguide arrays are arranged such that a plurality of signal processing operations may be performed substantially simultaneously. In a preferred embodiment, the switches and waveguide arrays are coupled with a light focusing device and a dispersion apparatus to form a switched, combined multiplexer/demultiplexer having signal attenuation and modification capabilities.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: September 5, 2006
    Assignee: Finisar Corporation
    Inventors: Ray T. Chen, William W. Morey
  • Patent number: 7006727
    Abstract: A combined multiplexer/demultiplexer for use in optical communication systems is disclosed. The combined multiplexer/demultiplexer includes a plurality of waveguide arrays and a plurality of signal carriers, each disposed substantially symmetrically about an optical axis of the device. In operation, a signal carrier emits a multiple wavelength optical signal that is received and directed to a dispersion apparatus by a light focusing device. The dispersion apparatus diffracts the optical signal into selected spectral components and reflects the spectral components back to the waveguide arrays through the light focusing device. The signal processing, such as multiplexing and demultiplexing, performed by each waveguide array depends on their configuration. The waveguide arrays may be configured to substantially simultaneously multiplex and/or demultiplex the spectral components.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: February 28, 2006
    Assignee: Fluisar Corporation
    Inventors: William W. Morey, Ray T. Chen
  • Publication number: 20040136071
    Abstract: A diffractive optics system for wavelength division multiplexing and demultiplexing optical signals. The present system can be employed in multiplexers, demultiplexers, spectrum analyzers, and the like. In one embodiment, the diffractive optics system includes a waveguide array, a lens assembly, first and second diffractive optical elements (“DOEs”), and a reflector. In a demultiplexing operation, a multiplexed optical signal is input into the system via an input waveguide in the waveguide array. The signal is focused by the lens assembly, then transmitted through the first and second DOEs, where diffraction of the signal and separation of its constituent wavelength-distinct channels occurs. The channels are then reflected by the reflector back through the first and second DOEs, after which each channel is directed by the lens assembly to one of a plurality of output waveguides located in the waveguide array. A conversely similar process is followed for producing a multiplexed optical signal.
    Type: Application
    Filed: October 22, 2003
    Publication date: July 15, 2004
    Inventors: William W. Morey, Xuegong Deng, Ray T. Chen
  • Publication number: 20030053752
    Abstract: A system and method for wavelength division multiplexing and demultiplexing with broadened and flattened passband profiles are disclosed. A spectral modifying element may be used to broaden and flatten the passband profile of associated multiple wavelength optical signals and spectral components. The system preferably includes a light focusing device and a diffraction grating having a direction of dispersion. The spectral modify element primarily transforms or broadens and flattens optical signals in only the direction of dispersion of the associated diffraction grating.
    Type: Application
    Filed: June 26, 2002
    Publication date: March 20, 2003
    Inventors: William W. Morey, Xuegong Deng, James W. Horwitz, Jie Qiao
  • Publication number: 20020131702
    Abstract: A combined multiplexer/demultiplexer for use in optical communication systems is disclosed. The combined multiplexer/demultiplexer includes a plurality of waveguide arrays and a plurality of signal carriers, each disposed substantially symmetrically about an optical axis of the device. In operation, a signal carrier emits a multiple wavelength optical signal that is received and directed to a dispersion apparatus by a light focusing device. The dispersion apparatus diffracts the optical signal into selected spectral components and reflects the spectral components back to the waveguide arrays through the light focusing device. The signal processing, such sas multiplexing and demultiplexing, performed by each waveguide array depends on their configuration. The waveguide arrays may be configured to substantially simultaneously multiplex and/or demultiplex the spectral components.
    Type: Application
    Filed: March 14, 2002
    Publication date: September 19, 2002
    Inventors: William W. Morey, Ray T. Chen
  • Publication number: 20020131692
    Abstract: A DWDM add/drop system for use in optical communication system is disclosed. Using semiconductor fabrication techniques, a plurality of waveguide arrays and signal carriers are substantially symmetrically arranged about an optical axis of the system. Electrode heaters are provided proximate junctions created at the intersections of selected waveguides. Using the heaters, portions of optical signals may be redirected to other waveguides. In addition, the heaters may be used to attenuate or otherwise modify signals in the waveguides. The waveguide arrays are arranged such that a plurality of signal processing operations may be performed substantially simultaneously. In a preferred embodiment, the switches and waveguide arrays are coupled with a light focusing device and a dispersion apparatus to form a switched, combined multiplexer/demultiplexer having signal attenuation and modification capabilities.
    Type: Application
    Filed: March 14, 2002
    Publication date: September 19, 2002
    Inventors: Ray T. Chen, William W. Morey
  • Patent number: 6233382
    Abstract: A thermal compensation package for an optical fiber having a Bragg grating is provided. The package includes a support member adapted to support the optical fiber which is in contact with the optical fiber along substantially the entire length of the Bragg grating. At least one retaining member is provided for attaching the optical fiber to the support member. The support member is formed from a material having a first CTE that is negative in a first direction and a second CTE in a second direction that is different from the first CTE. The material is selected so that the first CTE has a sufficiently negative value to compensate for temperature fluctuations such that a reflection wavelength of the Bragg grating is substantially temperature independent over a given operating range.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: May 15, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Grieg A. Olson, William W. Morey
  • Patent number: 5691999
    Abstract: A fiber laser 26 including a rare-earth doped fiber laser cavity 32 delimited by a pair of reflective elements 28,30, such as Bragg gratings, is tuned by compressing the cavity 32 and the gratings 28,30. Because an optical fiber is a much stronger under compression than in tension, the laser 26 is tunable over a much broader range than conventional tension/stretching techniques.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: November 25, 1997
    Assignee: United Technologies Corporation
    Inventors: Gary A. Ball, William W. Morey