Patents by Inventor Woo-Sung Bae

Woo-Sung Bae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230331148
    Abstract: The present disclosure is directed to an automotive component and method of finishing such component including a polymer substrate, a tinted primer disposed over a first surface of the polymer substrate, a semi-transparent metallic coating disposed over the tinted primer. The semi-transparent metallic coating and tinted primer define at least one discontinuity. The automotive component further includes a top-coat disposed over the semi-transparent metallic coating and fills in the discontinuity. In aspects, the automotive component is back-lit and includes a light emitting source optically coupled to a second surface of the polymer substrate.
    Type: Application
    Filed: April 13, 2022
    Publication date: October 19, 2023
    Inventor: Woo-Sung Bae
  • Patent number: 11198803
    Abstract: A process comprising a) mixing i) an isocyanate reactive component that contains from 2 to 100 weight percent of an aminobenzoate terminated composition wherein the isocyanate reactive component does not contain a solvent; and ii) an isocyanate terminated component having an isocyanate functionality of from 2 to 6 wherein the isocyanate terminated component does not contain a solvent; at a stoichiometric ratio of NCO to reactive hydrogen in the range of from 0.9 to 2.5; to form an adhesive composition; b) applying the adhesive composition to a primary substrate; and c) laminating the primary substrate with a secondary film to form a laminate structure, is disclosed. The laminate structure can be used as a laminating adhesive.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: December 14, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Woo-Sung Bae, Justin M. Virgili, Mark F. Sonnenschein, Jonathan Barrus, Yinzhong Guo, Rui Xie
  • Patent number: 10414859
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols are reaction products of a thermoplastic polyester, a glycol, and a hydrophobe selected from ricinoleic acid, ethoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids, tung oil, soybean oil, sunflower oil, cardanol-based products, recycled cooking oil, isostearyl alcohol, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or fatty acids, and mixtures thereof. In one process, the polyols are made by reacting the thermoplastic polyester with a glycol to give a digested intermediate, which is then reacted with the hydrophobe. In another process, the thermoplastic polyester, glycol, and hydrophobe are combined and reacted in a single step. These hydrophobes facilitate the production from recycled thermoplastics of polyols that have good transparency and little or no particulate settling or phase separation.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: September 17, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Kevin Anthony Rogers, Eric D Vrabel, Matthew James Beatty, Woo-Sung Bae, Shakti L Mukerjee
  • Patent number: 10336958
    Abstract: Sustainable lubricant compositions made from recycled thermoplastic polyesters and other reclaimed or biorenewable reactants and a method of formulating them are disclosed. The lubricant compositions comprise a polyester base oil, which incorporates recurring units from a digested thermoplastic polyester, a low-molecular-weight polyol, and C8-C24 fatty acid. The base oil has a number-average molecular weight within the range of 300 to 5000 g/mol, a hydroxyl value less than 50 mg KOH/g, and a viscosity at 40° C. less than 5000 cSt. Some of the lubricant compositions comprise the polyester base oil and one or more additives including anti-wear agents, corrosion inhibitors, antioxidants, thickeners, detergents, and the like.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: July 2, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Woo-Sung Bae, Jack R. Kovsky, Rick Tabor
  • Patent number: 10336925
    Abstract: Semi-crystalline polyester polyols and their use in reactive hot-melt adhesives are disclosed. The polyols comprise recurring units of a C2-C10 aliphatic diol, a C8-C24 aliphatic dicarboxylic acid, and 1 to 20 wt. % of an aromatic dicarboxylic acid source, a polycarbonate, or a combination thereof. The polyols have a hydroxyl number within the range of 14 to 112 mg KOH/g. Reactive hot-melt adhesives from the polyols and composite structures produced using the adhesives are also disclosed. A minor proportion of aromatic dicarboxylic acid, polycarbonate content in the polyester polyol surprisingly improves the properties of reactive hot-melt adhesives when compared with a commercial hot-melt adhesive or an adhesive formulated using an all-aliphatic polyester polyol. The adhesives are useful for bonding a wide variety of substrates, including paper, wood, glass, ceramics, plastics, and metals.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: July 2, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Woo-Sung Bae, Kevin Rogers, Michael Christy, Rick Tabor
  • Patent number: 10155837
    Abstract: Polyester polyol compositions are disclosed. The polyol compositions, which comprise recurring units of a digested thermoplastic polyester, a glycol, and castor oil, ricinoleic acid, or a mixture of castor oil and ricinoleic acid, have hydroxyl numbers within the range of 20 to 150 mg KOH/g and average hydroxyl functionalities within the range of 2.5 to 3.5. The invention includes flexible polyurethane foams that incorporate the polyester polyols. Sustainable polyester polyols made completely or in substantial part from recycled, post-industrial, and/or biorenewable materials such as polyethylene terephthalate, glycols, and castor oil are provided. The polyols have desirable properties for formulating flexible polyurethane foams and other products.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: December 18, 2018
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Matt Brown, Michelle Samson, Jack R. Kovsky, Woo-Sung Bae, Shakti L. Mukerjee, Rick Tabor
  • Publication number: 20180237573
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
  • Publication number: 20180223143
    Abstract: A process comprising a) mixing i) an isocyanate reactive component that contains from 2 to 100 weight percent of an aminobenzoate terminated composition wherein the isocyanate reactive component does not contain a solvent; and ii) an isocyanate terminated component having an isocyanate functionality of from 2 to 6 wherein the isocyanate terminated component does not contain a solvent; at a stoichiometric ratio of NCO to reactive hydrogen in the range of from 0.9 to 2.5; to form an adhesive composition; b) applying the adhesive composition to a primary substrate; and c) laminating the primary substrate with a secondary film to form a laminate structure, is disclosed. The laminate structure can be used as a laminating adhesive.
    Type: Application
    Filed: May 31, 2016
    Publication date: August 9, 2018
    Inventors: Woo-Sung Bae, Justin M. Virgili, Mark F. Sonnenschein, Jonathan Barrus, Yinzhong Guo, Rui Xie
  • Patent number: 9951171
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 24, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Publication number: 20180057764
    Abstract: Sustainable lubricant compositions made from recycled thermoplastic polyesters and other reclaimed or biorenewable reactants and a method of formulating them are disclosed. The lubricant compositions comprise a polyester base oil, which incorporates recurring units from a digested thermoplastic polyester, a low-molecular-weight polyol, and C8-C24 fatty acid. The base oil has a number-average molecular weight within the range of 300 to 5000 g/mol, a hydroxyl value less than 50 mg KOH/g, and a viscosity at 40° C. less than 5000 cSt. Some of the lubricant compositions comprise the polyester base oil and one or more additives including anti-wear agents, corrosion inhibitors, antioxidants, thickeners, detergents, and the like.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 1, 2018
    Inventors: Woo-Sung Bae, Jack R. Kovsky, Rick Tabor
  • Patent number: 9896540
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Patent number: 9890243
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: February 13, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Patent number: 9884938
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: February 6, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Publication number: 20180030197
    Abstract: Polyester polyol compositions are disclosed. The polyol compositions, which comprise recurring units of a digested thermoplastic polyester, a glycol, and castor oil, ricinoleic acid, or a mixture of castor oil and ricinoleic acid, have hydroxyl numbers within the range of 20 to 150 mg KOH/g and average hydroxyl functionalities within the range of 2.5 to 3.5. The invention includes flexible polyurethane foams that incorporate the polyester polyols. Sustainable polyester polyols made completely or in substantial part from recycled, post-industrial, and/or biorenewable materials such as polyethylene terephthalate, glycols, and castor oil are provided. The polyols have desirable properties for formulating flexible polyurethane foams and other products.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 1, 2018
    Inventors: Matt Brown, Michelle Samson, Jack R. Kovsky, Woo-Sung Bae, Shakti L. Mukerjee, Rick Tabor
  • Publication number: 20170335057
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. In some aspects, the polyols comprise recurring units from a thermoplastic polyester or an aromatic polyacid source, a glycol, and a hydroxy-functional ketal acid, ester or amide. Optionally, the polyols incorporate recurring units of a hydrophobe. The polyols are made in one or multiple steps; in some aspects, the thermoplastic polyester or aromatic polyacid source and the glycol are reacted first, followed by reaction with the hydroxy-functional ketal acid, ester or amide. The resulting polyols have good transparency and little or no particulate settling or phase separation. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, flexible and rigid foams, coatings, adhesives, sealants, and elastomers can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: Rick Tabor, Eric David Vrabel, Kevin Anthony Rogers, Matthew James Beatty, Woo-Sung Bae, Jack Rogers Kovsky, Michael Robert Christy
  • Patent number: 9752005
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: September 5, 2017
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Rogers, Woo-Sung Bae, Adam W. Emerson, Brian Douglas Phillips
  • Publication number: 20170121456
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Application
    Filed: January 6, 2017
    Publication date: May 4, 2017
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Publication number: 20170121457
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Application
    Filed: January 17, 2017
    Publication date: May 4, 2017
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Publication number: 20170066950
    Abstract: Semi-crystalline polyester polyols and their use in reactive hot-melt adhesives are disclosed. The polyols comprise recurring units of a C2-C10 aliphatic diol, a C8-C24 aliphatic dicarboxylic acid, and 1 to 20 wt. % of an aromatic dicarboxylic acid source, a polycarbonate, or a combination thereof. The polyols have a hydroxyl number within the range of 14 to 112 mg KOH/g. Reactive hot-melt adhesives from the polyols and composite structures produced using the adhesives are also disclosed. A minor proportion of aromatic dicarboxylic acid, polycarbonate content in the polyester polyol surprisingly improves the properties of reactive hot-melt adhesives when compared with a commercial hot-melt adhesive or an adhesive formulated using an all-aliphatic polyester polyol. The adhesives are useful for bonding a wide variety of substrates, including paper, wood, glass, ceramics, plastics, and metals.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 9, 2017
    Inventors: Woo-Sung Bae, Kevin Rogers, Michael Christy, Rick Tabor
  • Patent number: 9580546
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: February 28, 2017
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee