Patents by Inventor Xiao (Charles) Yang

Xiao (Charles) Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100171153
    Abstract: A monolithically integrated MEMS pressure sensor and CMOS substrate using IC-Foundry compatible processes. The CMOS substrate is completed first using standard IC processes. A diaphragm is then added on top of the CMOS. In one embodiment, the diaphragm is made of deposited thin films with stress relief corrugated structure. In another embodiment, the diaphragm is made of a single crystal silicon material that is layer transferred to the CMOS substrate. In an embodiment, the integrated pressure sensor is encapsulated by a thick insulating layer at the wafer level. The monolithically integrated pressure sensor that adopts IC foundry-compatible processes yields the highest performance, smallest form factor, and lowest cost.
    Type: Application
    Filed: July 7, 2009
    Publication date: July 8, 2010
    Inventor: Xiao (Charles) Yang
  • Publication number: 20100164025
    Abstract: A monolithically integrated MEMS and CMOS substrates provided by an IC-foundry compatible process. The CMOS substrate is completed first using standard IC processes. A diaphragm with stress relief corrugated structure is then fabricated on top of the CMOS. Air vent holes are then etched in the CMOS substrate. Finally, the microphone device is encapsulated by a thick insulating layer at the wafer level. The monolithically integrated microphone that adopts IC foundry-compatible processes yields the highest performance, smallest form factor, and lowest cost. Using this architecture and fabrication flow, it is feasible and cost-effective to make an array of Silicon microphones for noise cancellation, beam forming, better directionality and fidelity.
    Type: Application
    Filed: June 23, 2009
    Publication date: July 1, 2010
    Inventor: Xiao(Charles) Yang
  • Publication number: 20100075481
    Abstract: The present invention relates to integrating an inertial mechanical device on top of an IC substrate monolithically using IC-foundry compatible processes. The IC substrate is completed first using standard IC processes. A thick silicon layer is added on top of the IC substrate. A subsequent patterning step defines a mechanical structure for inertial sensing. Finally, the mechanical device is encapsulated by a thick insulating layer at the wafer level. Compared with the incumbent bulk or surface micromachined MEMS inertial sensors, vertically monolithically integrated inertial sensors provided by embodiments of the present invention have one or more of the following advantages: smaller chip size, lower parasitics, higher sensitivity, lower power, and lower cost.
    Type: Application
    Filed: July 7, 2009
    Publication date: March 25, 2010
    Inventor: Xiao (Charles) Yang
  • Publication number: 20100007238
    Abstract: This present invention relates generally to manufacturing objects. More particularly, the invention relates to a method and structure for fabricating an out-of-plane compliant micro actuator. The compliant actuator has large actuation range in both vertical and horizontal planes without physical contact to the substrate. Due to fringe field actuation, the compliant actuator has no pull-in phenomenon and requires low voltage by a ‘zipping’ movement compared to conventional parallel plate electrostatic actuators. The method and device can be applied to micro actuators as well as other devices, for example, micro-electromechanical sensors, detectors, fluidic, and optical systems.
    Type: Application
    Filed: January 15, 2009
    Publication date: January 14, 2010
    Inventor: XIAO (CHARLES) YANG
  • Patent number: 7473912
    Abstract: According to a specific embodiment of the present invention, a mask-less lithography method and apparatus is provided. The apparatus includes an integrated write head on a slider with an air bearing that creates a lift force that allows that write head to fly over a spinning wafer substrate in nanometer distance without physical contact. The short distance between the write head and substrate prevents the light from diffracting. As a result, micro and nanometer structures can be patterned without being limited by light diffraction in conventional lithography methods.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 6, 2009
    Inventor: Xiao (Charles) Yang
  • Patent number: 7449284
    Abstract: A method for fabricating mechanical structures from bonding substrates. The method includes providing a bonded substrate structure, which includes a first substrate having a first thickness of silicon material and a first face. The bonded substrate also includes a second substrate having a second thickness and a second face. At least the first substrate or at least the second substrate (or both) has an alignment mark comprising a front-size zero mark within a portion of either the first thickness or the second thickness. The method includes applying a layer of photomasking material overlying a first backside surface of the first substrate. The method includes illuminating electromagnetic radiation using a coherent light source through the layer of photoresist material and through a portion of the first thickness. The method includes detecting an indication of the alignment mark using a signal associated with a portion of the electromagnetic radiation from a second backside of the second substrate.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: November 11, 2008
    Assignee: Miradia Inc.
    Inventor: Xiao Charles Yang
  • Publication number: 20080191221
    Abstract: A multilayered integrated optical and circuit device. The device has a first substrate comprising at least one integrated circuit chip thereon, which has a cell region and a peripheral region. Preferably, the peripheral region has a bonding pad region, which has one or more bonding pads and an antistiction region surrounding each of the one or more bonding pads. The device has a second substrate with at least one or more deflection devices thereon coupled to the first substrate. At least one or more bonding pads are exposed on the first substrate. The device has a transparent member overlying the second substrate while forming a cavity region to allow the one or more deflection devices to move within a portion of the cavity region to form a sandwich structure including at least a portion of the first substrate, a portion of the second substrate, and a portion of the transparent member.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 14, 2008
    Applicant: Miradia Inc.
    Inventors: Xiao Charles Yang, Dongmin Chen, Philip Chen
  • Publication number: 20070224548
    Abstract: According to a specific embodiment of the present invention, a mask-less lithography method and apparatus is provided. The apparatus includes an integrated write head on a slider with an air bearing that creates a lift force that allows that write head to fly over a spinning wafer substrate in nanometer distance without physical contact. The short distance between the write head and substrate prevents the light from diffracting. As a result, micro and nanometer structures can be patterned without being limited by light diffraction in conventional lithography methods.
    Type: Application
    Filed: November 9, 2006
    Publication date: September 27, 2007
    Applicant: Xiao (Charles) Yang
    Inventor: Xiao (Charles) Yang
  • Publication number: 20070103009
    Abstract: The present invention relates to a method and device for fabricating an integrated flywheel device using semiconductor materials and IC/MEMS processes. Single crystal silicon has high energy storage/weight ratio and no defects. Single crystal silicon flywheel can operate at much higher speed than conventional flywheel. The integrated silicon flywheel is operated by electrostatic motor and supported by electrostatic bearings, which consume much less power than magnetic actuation in conventional flywheel energy storage systems. The silicon flywheel device is fabricated by IC and MEMS processes to achieve high device integration and low manufacturing cost. For the integrated silicon flywheel, high vacuum can be achieved using hermetic bonding methods such as eutectic, fusion, glass frit, SOG, anodic, covalent, etc. To achieve larger energy capacity, an array of silicon flywheels is fabricated on one substrate. Multiple layers of flywheel energy storage devices are stacked.
    Type: Application
    Filed: October 30, 2006
    Publication date: May 10, 2007
    Inventor: Xiao (Charles) Yang
  • Publication number: 20070102035
    Abstract: The present invention relates to a method and device for integrating solar cell on LCD panels for photovoltaic electricity generation for portable electronic devices. According to one embodiment of the present invention, the black matrix region on the color filter substrate in a LCD panel is replaced by a solar cell region. A lens array substrate is coupled between the light source layer and the TFT to focus the backlight to increase the solar cell layer area while maintaining high fill ratio of the LCD pixels. The solar cell material is selected from at least silicon, a single crystal silicon, poly-crystalline silicon, amorphous silicon, gallium arsenide, cadmium telluride, copper indium diselenide, organic/inorganic, or hybrid cells. The substrate material is selected from glass, metal, plastic or polymer.
    Type: Application
    Filed: October 30, 2006
    Publication date: May 10, 2007
    Applicant: Xiai (Charles) Yang
    Inventor: Xiao (Charles) Yang
  • Publication number: 20070105320
    Abstract: A double gated MOS transistor structure and method of manufacture. Fabricating transistor devices on both top and bottom surfaces of the silicon layer creates vertical double gate transistor devices. The presented double gate transistor devices do not require alignment of the top and bottom gates. In addition to double gate transistor devices, it is possible to fabricate two layers of independent transistor devices using a similar process. The two layers transistor devices can be interconnected by short VIAs thru the thin silicon layer.
    Type: Application
    Filed: August 31, 2006
    Publication date: May 10, 2007
    Inventor: Xiao (Charles) Yang
  • Publication number: 20070097551
    Abstract: The present invention provides a method and device for fabricating high density memory device. Similar to a Hard Disk Drive (HDD), the integrated memory device is consisted with a rotating media plate and a Read/Write (R/W) head on a movable suspension. Unlike HDD where the media plate is coupled to a motor, the media plate is micro fabricated on a semiconductor substrate and is also a motor which is actuated and rotated by electrostatic forces. The head suspension is also micro fabricated and anchored to an electrostatic comb drive micro actuator. Control IC can also be integrated on-chip with the integrated memory device as well as acceleration sensing devices such as MEMS accelerator for anti-shock measures. The integrated disk storage device is fabricated by conventional semiconductor and MEMS fabrication process technology.
    Type: Application
    Filed: October 30, 2006
    Publication date: May 3, 2007
    Inventor: Xiao (Charles) Yang
  • Patent number: 7160791
    Abstract: A method for forming a standoff structure for packaging devices, e.g., optical devices, integrated circuit devices. The method includes providing a substrate, e.g., silicon wafer. The substrate includes a first surface region, a second surface region, and a thickness defined between the first surface region and the second surface region. The method includes protecting selected portions of the first surface region using a masking layer while leaving a plurality of unprotected regions. Preferably, each of the unprotected regions is to be associated with an opening through the thickness of the substrate. The method causes removal of the plurality of unprotected regions to form a plurality of openings through the thickness of the substrate to provide a resulting patterned substrate. Each of the openings is bordered by a portion of the selected portions of the first surface region. Preferably, etching techniques, such as wet etch or dry etching, can be used, depending upon the embodiment.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: January 9, 2007
    Assignee: Miradia Inc.
    Inventor: Xiao Charles Yang
  • Patent number: 7109066
    Abstract: A method for forming a patterned silicon bearing material, e.g., silicon substrate. The method includes providing a silicon substrate, which has a surface region and a backside region. The method includes forming a plurality of recessed regions on the surface region. Each of the plurality of recessed regions has a border region. Preferably, the plurality of recessed regions forms a patterned surface region. The method includes bonding (e.g., hermetic bonding or on-hermetic seal) the patterned surface region to a handle surface region of a handle substrate, e.g., glass substrate. Each of the border regions, which protrude outwardly from the recessed regions, is bonded to the handle surface region, while each of the recessed regions remain free from attachment to any surface of the handle surface region. The method includes etching selected regions on the backside to remove a thickness of silicon substrate overlying each of the recessed regions.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: September 19, 2006
    Assignee: Miradia Inc.
    Inventor: Xiao (Charles) Yang
  • Publication number: 20060121693
    Abstract: A multilayered integrated optical and circuit device. The device has a first substrate comprising at least one integrated circuit chip thereon, which has a cell region and a peripheral region. Preferably, the peripheral region has a bonding pad region, which has one or more bonding pads and an antistiction region surrounding each of the one or more bonding pads. The device has a second substrate with at least one or more deflection devices thereon coupled to the first substrate. At least one or more bonding pads are exposed on the first substrate. The device has a transparent member overlying the second substrate while forming a cavity region to allow the one or more deflection devices to move within a portion of the cavity region to form a sandwich structure including at least a portion of the first substrate, a portion of the second substrate, and a portion of the transparent member.
    Type: Application
    Filed: December 8, 2004
    Publication date: June 8, 2006
    Applicant: Miradia Inc.
    Inventors: Xiao "Charles" Yang, Dongmin Chen, Philip Chen
  • Patent number: 7034984
    Abstract: Fabrication of a micro mirror array having a hidden hinge that is useful, for example, in a reflective spatial light modulator. In one embodiment, the micro mirror array is fabricated from a substrate that is a first substrate of a single crystal material. Cavities are formed in a first side of the first substrate. Separately, electrodes and addressing and control circuitry are fabricated on a first side of a second substrate. The first side of the first substrate is bonded to the first side of the second substrate. The sides are aligned so the electrodes on the second substrate are in proper relation with the mirror plates that will be formed on the first substrate and that the electrodes will control.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: April 25, 2006
    Assignee: Miradia Inc.
    Inventors: Shaoher X. Pan, Xiao (Charles) Yang
  • Publication number: 20060082862
    Abstract: A micro mirror array having a hidden hinge that is useful, for example, in a reflective spatial light modulator. In one embodiment, the micro mirror array includes spacer support walls, a hinge, a mirror plate and a reflective surface on the upper surface of the mirror plate, the reflective surface concealing the hinge and the mirror plate. The micro mirror array fabricated from a single material.
    Type: Application
    Filed: November 30, 2005
    Publication date: April 20, 2006
    Applicant: Miradia Inc.
    Inventors: Shaoher Pan, Xiao (Charles) Yang