Patents by Inventor Xiaochuan Pan

Xiaochuan Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11607187
    Abstract: A multi-spectral tomography imaging system includes one or more source devices configured to direct beams of radiation in multiple spectra to a region of interest (ROI), and one or more detectors configured to receive the beams of radiation. The system includes a processor configured to cause movement in at least one of the components such that a first beam of radiation with a first spectrum is directed to the ROI for less than 360 degrees of movement of the ROI. The processor is also configured to process data detected by the one or more detectors, where the data results at least in part from the first beam of radiation with the first spectrum that is directed to the ROI for less than the 360 degrees of movement of the ROI. The processor is further configured to generate an image of the ROI based on the processed data.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: March 21, 2023
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: Xiaochuan Pan, Buxin Chen, Zheng Zhang, Emil Sidky, Dan Xia
  • Publication number: 20220104783
    Abstract: A multi-spectral tomography imaging system includes one or more source devices configured to direct beams of radiation in multiple spectra to a region of interest (ROI), and one or more detectors configured to receive the beams of radiation. The system includes a processor configured to cause movement in at least one of the components such that a first beam of radiation with a first spectrum is directed to the ROI for less than 360 degrees of movement of the ROI. The processor is also configured to process data detected by the one or more detectors, where the data results at least in part from the first beam of radiation with the first spectrum that is directed to the ROI for less than the 360 degrees of movement of the ROI. The processor is further configured to generate an image of the ROI based on the processed data.
    Type: Application
    Filed: December 14, 2021
    Publication date: April 7, 2022
    Inventors: Xiaochuan Pan, Buxin Chen, Zheng Zhang, Emil Sidky, Dan Xia
  • Patent number: 11278254
    Abstract: A multi-spectral tomography imaging system includes one or more source devices configured to direct beams of radiation in multiple spectra to a region of interest (ROI), and one or more detectors configured to receive the beams of radiation. The system includes a processor configured to cause movement in at least one of the components such that a first beam of radiation with a first spectrum is directed to the ROI for less than 360 degrees of movement of the ROI. The processor is also configured to process data detected by the one or more detectors, where the data results at least in part from the first beam of radiation with the first spectrum that is directed to the ROI for less than the 360 degrees of movement of the ROI. The processor is further configured to generate an image of the ROI based on the processed data.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: March 22, 2022
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: Xiaochuan Pan, Buxin Chen, Zheng Zhang, Emil Sidky, Dan Xia
  • Patent number: 11270479
    Abstract: In an emission imaging method, emission imaging data are acquired for a subject using an emission imaging scanner (10) including radiation detectors (12). The emission imaging data are reconstructed to generate a reconstructed image by executing a constrained optimization program including a measure of data fidelity between the acquired emission imaging data an a reconstruct-image transformed by a data model of the imaging scanner to emission imaging data. During the reconstructing, each iteration of the constrained optimization program is constrained by an image variability constraint. The reconstructed image is displayed the reconstructed image on a display device. The emission imaging may be positron emission tomography (PET) imaging data, optionally acquired using a sparse detector array. The image variability constraint may be a constraint that an image total variation (image TV) of a latent image defined using a Gaussian blurring matrix be less than a maximum value.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: March 8, 2022
    Assignees: KONINKLIJKE PHILIPS N.V., UNIVERSITY OF CHICAGO
    Inventors: Xiaochuan Pan, Jinghan Ye, Amy Perkins, Chi-Hua Tung, Zheng Zhang
  • Publication number: 20210209817
    Abstract: In an emission imaging method, emission imaging data are acquired for a subject using an emission imaging scanner (10) including radiation detectors (12). The emission imaging data are reconstructed to generate a reconstructed image by executing a constrained optimization program including a measure of data fidelity between the acquired emission imaging data an a reconstruct-image transformed by a data model of the imaging scanner to emission imaging data. During the reconstructing, each iteration of the constrained optimization program is constrained by an image variability constraint. The reconstructed image is displayed the reconstructed image on a display device. The emission imaging may be positron emission tomography (PET) imaging data, optionally acquired using a sparse detector array. The image variability constraint may be a constraint that an image total variation (image TV) of a latent image defined using a Gaussian blurring matrix be less than a maximum value.
    Type: Application
    Filed: February 13, 2017
    Publication date: July 8, 2021
    Inventors: Xiaochuan PAN, Jinghan YE, Amy PERKINS, Chi-Hua TUNG, Zheng ZHANG
  • Patent number: 10789738
    Abstract: An apparatus and method are provided for computed tomography (CT) imaging to reduce artifacts due to objects outside the field of view (FOV) of a reconstructed image. The artifacts are suppressed by using an iterative reconstruction method to minimize a cost function that includes a de-emphasis operator. The de-emphasis operator operates in the data domain, and minimizes the contributions of data inconsistencies arising from attenuation due to objects outside the FOV. This can be achieved by penalizing images that manifest indicia of artifacts due to outside objects especially those outside objects have high-attenuation densities and minimizing components of the data inconsistency likely attributable to the outside object.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: September 29, 2020
    Assignees: THE UNIVERSITY OF CHICAGO, CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Jingwu Yao, Joseph Manak
  • Publication number: 20200222016
    Abstract: A multi-spectral tomography imaging system includes one or more source devices configured to direct beams of radiation in multiple spectra to a region of interest (ROI), and one or more detectors configured to receive the beams of radiation. The system includes a processor configured to cause movement in at least one of the components such that a first beam of radiation with a first spectrum is directed to the ROI for less than 360 degrees of movement of the ROI. The processor is also configured to process data detected by the one or more detectors, where the data results at least in part from the first beam of radiation with the first spectrum that is directed to the ROI for less than the 360 degrees of movement of the ROI. The processor is further configured to generate an image of the ROI based on the processed data.
    Type: Application
    Filed: September 21, 2018
    Publication date: July 16, 2020
    Inventors: Xiaochuan Pan, Buxin Chen, Zheng Zhang, Emil Sidky, Dan Xia
  • Patent number: 10517543
    Abstract: A method and apparatus is provided to generate a multiresolution image having at least two regions with different pixel pitches. The multiresolution image is reconstructed using projection data having various pixel pitches corresponding to the pixel pitches of the multiresolution image. By using a higher resolution inside regions of interest (ROIs) in both the image and projection domains and lower resolution outside the ROIs, fast image reconstruction can be performed while avoiding truncation artifacts, which result imaging is limited to an ROI excluding attenuation regions. Further, those regions of greater clinical relevance and greater structural variance within the reconstructed images can be selected to be within the ROIs to improve the clinical benefit of the multiresolution image. The multiresolution image can be reconstructed using an iterative reconstruction method in which the high- and low-resolution regions are uniquely evaluated.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: December 31, 2019
    Assignees: The University of Chicago, Canon Medical Systems Corporation
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Joseph Manak
  • Publication number: 20190139272
    Abstract: An apparatus and method are provided for computed tomography (CT) imaging to reduce artifacts due to objects outside the field of view (FOV) of a reconstructed image. The artifacts are suppressed by using an iterative reconstruction method to minimize a cost function that includes a de-emphasis operator. The de-emphasis operator operates in the data domain, and minimizes the contributions of data inconsistencies arising from attenuation due to objects outside the FOV. This can be achieved by penalizing images that manifest indicia of artifacts due to outside objects especially those outside objects have high-attenuation densities and minimizing components of the data inconsistency likely attributable to the outside object.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 9, 2019
    Applicants: THE UNIVERSITY OF CHICAGO, CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Jingwu Yao, Joseph Manak
  • Publication number: 20190076101
    Abstract: A method and apparatus is provided to generate a multiresolution image having at least two regions with different pixel pitches. The multiresolution image is reconstructed using projection data having various pixel pitches corresponding to the pixel pitches of the multiresolution image. By using a higher resolution inside regions of interest (ROIs) in both the image and projection domains and lower resolution outside the ROIs, fast image reconstruction can be performed while avoiding truncation artifacts, which result imaging is limited to an ROI excluding attenuation regions. Further, those regions of greater clinical relevance and greater structural variance within the reconstructed images can be selected to be within the ROIs to improve the clinical benefit of the multiresolution image. The multiresolution image can be reconstructed using an iterative reconstruction method in which the high- and low-resolution regions are uniquely evaluated.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Applicants: The University of Chicago, Toshiba Medical Systems Corporation
    Inventors: Xiaochuan Pan, Zheng Zhang, Dan Xia, Yu-Bing Chang, Joseph Manak
  • Patent number: 9025843
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 5, 2015
    Assignee: The University of Chicago
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Y. Sidky, Seungryong Cho
  • Publication number: 20120215090
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 23, 2012
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Y. Sidky, Seungryong Cho
  • Patent number: 8121245
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: February 21, 2012
    Assignee: The University of Chicago
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Y. Sidky, Seungryong Cho
  • Publication number: 20110170757
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 14, 2011
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Y. Sidky, Seungryong Cho
  • Publication number: 20090175562
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Application
    Filed: October 21, 2008
    Publication date: July 9, 2009
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Y. Sidky, Seungryong Cho
  • Patent number: 7444011
    Abstract: A method and apparatus for reconstruction of a region of interest (ROI) for an object using an imaging system is provided. The imaging system may substantially exactly reconstruct the ROI with a straight line trajectory. In the straight line trajectory, the ROI is not bounded or encircled by the actual trajectory of the source (e.g., no chords that are composed from two points on the source trajectory intersect or fill the ROI to be imaged). However, the ROI may be substantially reconstructed by using “virtual” chords to reconstruct the ROI. The virtual chords are such that no point on the trajectory is included in the virtual chord (such as one that is parallel to the straight line trajectory). These virtual chords may intersect and fill the ROI, thus enabling substantially exact reconstruction. Further, in reconstructing the image, the straight line trajectory may be assumed to be infinite in length.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: October 28, 2008
    Assignee: University of Chicago
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Y. Sidky, Seungryong Cho
  • Patent number: 7245755
    Abstract: A method and apparatus are provided for reconstructing a tomographic image from fan-beam or cone-beam data. The method includes the steps of collecting fan-beam or cone-beam data over an image space, converting the fan-beam or cone-beam data to parallel-beam data with respect to a rotation angle within the image space, performing a shift variant filtration of the parallel-beam data within the image space and converting the processed data to images through backprojection or other means.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: July 17, 2007
    Inventors: Xiaochuan Pan, Lifeng Yu, Chien-Min Kao
  • Publication number: 20070036418
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Application
    Filed: April 24, 2006
    Publication date: February 15, 2007
    Inventors: Xiaochuan Pan, Yu Zou, Lifeng Yu, Chien-Min Kao, Martin King, Maryellen Giger, Dan Xia, Howard Halpern, Charles Pelizzari, Emil Sidky, Seungryong Cho
  • Publication number: 20050249432
    Abstract: A method and apparatus for reconstruction of a region of interest for an object is provided. The reconstruction of the object may be based on chords which may fill a part, all, or more than all of the region of interest. Using chords for reconstruction may allow for reducing data acquired and/or processing for reconstructing a substantially exact image of the ROI. Moreover, various methodologies may be used in reconstructing the image, such as backprojection-filtration, and modified filtration backprojection.
    Type: Application
    Filed: February 10, 2005
    Publication date: November 10, 2005
    Inventors: Yu Zou, Xiaochuan Pan
  • Patent number: 6528793
    Abstract: A method and apparatus are provided for reconstructing images from data obtained from scintillation events occurring within a projection space of a depth-of-interaction positron emission tomography system. The method includes the steps of identifying a segment of each depth-of-interaction detector of respective pairs of depth-of-interaction detectors detecting the scintillation-events of the data obtained within the projection space and estimating a set of sinograms from the data based upon a set of depth-independent point spread functions of the identified segments of the respective pairs of depth-of-interaction detectors.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: March 4, 2003
    Assignee: Arch Development Corporation
    Inventors: Chin-Tu Chen, Xiaochuan Pan, Chien-Min Kao