Patents by Inventor Xiaoyan Shao

Xiaoyan Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8936978
    Abstract: A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: January 20, 2015
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Christian Lavoie, Christine Qiqing Ouyang, Xiaoyan Shao, Paul M. Solomon, Zhen Zhang, Bin Yang
  • Patent number: 8878259
    Abstract: Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Harold J. Hovel, Qiang Huang, Xiaoyan Shao, James Vichiconti, George F. Walker
  • Patent number: 8865502
    Abstract: The present disclosure provides a method of forming a back side surface field of a solar cell without utilizing screen printing. The method includes first forming a p-type dopant layer directly on the back side surface of the semiconductor substrate that includes a p/n junction utilizing an electrodeposition method. The p/n junction is defined as the interface that is formed between an n-type semiconductor portion of the substrate and an underlying p-type semiconductor portion of the substrate. The plated structure is then annealed to from a P++ back side surface field layer directly on the back side surface of the semiconductor substrate. Optionally, a metallic film can be electrodeposited on an exposed surface of the P++ back side surface layer.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Nicholas C. M. Fuller, Satyavolu S. Papa Rao, Xiaoyan Shao, Jeffrey Hedrick
  • Patent number: 8795502
    Abstract: A method of forming patterned metallization by electrodeposition under illumination without external voltage supply on a photovoltaic structure or on n-type region of a transistor/junction.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Harold J. Hovel, Devendra K. Sadana, Xiaoyan Shao, Steven Erik Steen
  • Patent number: 8604337
    Abstract: A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Laura L. Kosbar, Deborah A. Neumayer, Xiaoyan Shao
  • Patent number: 8598018
    Abstract: The present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A conductive layer is deposited on a substrate. The conductive layer is partially oxidized by an oxygen plasma process to convert a portion thereof to an oxide layer thereby forming the electrode. The oxide layer is free of surface defects and the thickness of the oxide layer is from about 0.09 nm to about 10 nm and ranges therebetween, controllable with 0.2 nm precision.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Azdakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Patent number: 8519260
    Abstract: A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Laura L. Kosbar, Deborah A. Neumayer, Xiaoyan Shao
  • Patent number: 8492899
    Abstract: The present disclosure relates to an improved method of providing a Ni silicide metal contact on a silicon surface by electrodepositing a Ni film on a silicon substrate. The improved method results in a controllable silicide formation wherein the silicide has a uniform thickness. The metal contacts may be incorporated in, for example, CMOS devices, MEM (micro-electro-mechanical) devices, and photovoltaic cells.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Xiaoyan Shao
  • Patent number: 8426236
    Abstract: A grid stack structure of a solar cell, which includes a silicon substrate, wherein a front side of the silicon is doped with phosphorus to form a n-emitter and a back side of the silicon is screen printed with aluminum (Al) metallization; a dielectric layer, which acts as an antireflection coating (ARC), applied on the silicon; a mask layer applied on the front side to define a grid opening of the dielectric layer, wherein an etching method is applied to open an unmasked grid area; a light-induced plated nickel or cobalt layer applied to the front side with electrical contact to the back side Al metallization; a silicide layer formed by rapid thermal annealing of the plated nickel (Ni) or cobalt (Co); an optional barrier layer electrodeposited on the silicide; a copper (Cu) layer electrodeposited on the silicide/barrier film layer; and a thin protective layer is chemically applied or electrodeposited on top of the Cu layer.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Harold J. Hovel, Xiaoyan Shao
  • Patent number: 8372744
    Abstract: A contact rhodium structure is fabricated by a process that comprises obtaining a substrate having a dielectric layer thereon, wherein the dielectric layer has cavities therein into which the contact rhodium is to be deposited; depositing a seed layer in the cavities and on the dielectric layer; and depositing the rhodium by electroplating from a bath comprising a rhodium salt; an acid and a stress reducer; and then optionally annealing the structure.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Xiaoyan Shao
  • Patent number: 8354336
    Abstract: Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Shafaat Ahmed, Hariklia Deligianni, Dario L. Goldfarb, Stefan Harrer, Binquan Luan, Glenn J. Martyna, Hongbo Peng, Stanislav Polonsky, Stephen Rossnagel, Xiaoyan Shao, Gustavo A. Stolovitzky
  • Publication number: 20130001784
    Abstract: A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, JR., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Kenneth P. Rodbell, Xiaoyan Shao
  • Patent number: 8344351
    Abstract: A phase change memory device includes a plurality of memory cells comprising a substrate having a contact surface with an array of conductive contacts to be connected with access circuitry and a nitride layer formed at the contact surface. A plurality of vias are formed through the nitride layer to the contact surface and correspond to each conductive contact, the vias including a conformal conductive seed layer lining each via along exposed portions of the nitride layer and the contact surface and having oxidized edges. A dielectric layer is recessed within the conformal conductive seed layer and exposes a center region of each via. A phase change material is recessed within the center region of each via. A conductive material that remains conductive upon oxidation is formed over the phase change material. A top electrode is formed on each memory cell.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Eric A. Joseph, Alejandro G. Schrott, Xiaoyan Shao
  • Publication number: 20120325316
    Abstract: A method to determine the cleanness of a semiconductor substrate and the quantity/density of pin holes that may exist within a patterned antireflective coating (ARC) is provided. Electroplating is employed to monitor the changes in the porosity of the ARC caused by the pin holes during solar cell manufacturing. In particular, electroplating a metal or metal alloy to form a metallic grid on an exposed front side surface of a substrate also fills the pin holes. The quantity/density of metallic filled pin holes (and hence the number of pin holes) in the patterned ARC can then be determined.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: John M. Cotte, Laura L. Kosbar, Deborah A. Neumayer, Xiaoyan Shao
  • Publication number: 20120325312
    Abstract: The present disclosure provides a method of forming a back side surface field of a solar cell without utilizing screen printing. The method includes first forming a p-type dopant layer directly on the back side surface of the semiconductor substrate that includes a p/n junction utilizing an electrodeposition method. The p/n junction is defined as the interface that is formed between an n-type semiconductor portion of the substrate and an underlying p-type semiconductor portion of the substrate. The plated structure is then annealed to from a P++ back side surface field layer directly on the back side surface of the semiconductor substrate. Optionally, a metallic film can be electrodeposited on an exposed surface of the P++ back side surface layer.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: Kathryn C. Fisher, Nicholas C. M. Fuller, Satyavolu S. Papa Rao, Xiaoyan Shao, Jeffrey Hedrick
  • Publication number: 20120298965
    Abstract: A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Applicants: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Wilfried Haensch, Christian Lavoie, Christine Qiqing Ouyang, Xiaoyan Shao, Paul M. Solomon, Zhen Zhang, Bin Yang
  • Publication number: 20120292771
    Abstract: A contact rhodium structure is fabricated by a process that comprises obtaining a substrate having a dielectric layer thereon, wherein the dielectric layer has cavities therein into which the contact rhodium is to be deposited; depositing a seed layer in the cavities and on the dielectric layer; and depositing the rhodium by electroplating from a bath comprising a rhodium salt; an acid and a stress reducer; and then optionally annealing the structure.
    Type: Application
    Filed: August 1, 2012
    Publication date: November 22, 2012
    Applicant: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Xiaoyan Shao
  • Publication number: 20120286236
    Abstract: Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.
    Type: Application
    Filed: July 23, 2012
    Publication date: November 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Harold J. HOVEL, Qiang Huang, Xiaoyan Shao, James Vichiconti, George F. Walker
  • Publication number: 20120285527
    Abstract: The instant disclosure relates to contact grids for use in photovoltaic cells, wherein a cross-section of the contact grid fingers is shaped as a trapezoid, as well as a method of making photovoltaic cells comprising these contact grids. The contact grids of the instant disclosure are cost effective and, due to their thick metal grids, exhibit minimum resistance. Despite having thick metal grids, the unique shape of the contact grid fingers of the instant disclosure allow the photovoltaic cells in which they are employed to retain more solar energy than traditional solar cells by reflecting incoming solar energy back onto the surface of the solar cell instead of reflecting this energy away from the cell.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ronald Goldblatt, Harold J. Hovel, Xiaoyan Shao, Steven E. Steen
  • Patent number: 8293643
    Abstract: A semiconductor device or a photovoltaic cell having a contact structure, which includes a silicon (Si) substrate; a metal alloy layer deposited on the silicon substrate; a metal silicide layer and a diffusion layer formed simultaneously from thermal annealing the metal alloy layer; and a metal layer deposited on the metal silicide and barrier layers.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: October 23, 2012
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., John M. Cotte, Kathryn C. Fisher, Laura L. Kosbar, Christian Lavoie, Zhu Liu, Kenneth P. Rodbell, Xiaoyan Shao