Patents by Inventor Xing Su

Xing Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190040458
    Abstract: DNA synthesis devices, systems, and methods are disclosed. An apparatus can include a synthesizer chip having an array of reaction units in a predetermined pattern, each reaction unit including a reaction surface and a reaction electrode of an IC array of reaction electrodes, and a synthesizer chip controller coupled to the IC array of reaction electrodes configured to address each reaction electrode individually. The apparatus can also include a reagent delivery chip positionable above the synthesizer chip, comprising an array of reagent delivery units arranged in the predetermined pattern, each reagent delivery unit including a reagent electrode of an IC array of reagent electrodes and each reagent delivery unit configured to receive and deliver a droplet of reagent fluid having a volume of 1 picoliter or less, and a reagent delivery chip controller coupled to the IC array of reagent electrodes configured to address each reagent electrode individually.
    Type: Application
    Filed: June 29, 2018
    Publication date: February 7, 2019
    Applicant: Intel Corporation
    Inventors: Xing Su, Grace Credo
  • Patent number: 10175190
    Abstract: Highly selective coated-electrode nanogap transducers for the detection of redox molecules are described. In an example, an analyte detection system includes one or more transducer electrodes having a surface for analyte detection. The surface includes a coating to inhibit direct contact of analyte with the surface of the one or more transducer electrodes.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: January 8, 2019
    Assignee: INTEL CORPORATION
    Inventors: Noureddine Tayebi, Xing Su, Handong Li
  • Publication number: 20180372601
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Application
    Filed: January 9, 2018
    Publication date: December 27, 2018
    Inventors: Xing Su, David J. Liu, Kai Wu, Kenneth B. Swartz, Mineo Yamakawa
  • Publication number: 20180230513
    Abstract: The presently claimed invention provides for novel methods and kits for analyzing a collection of target sequences in a nucleic acid sample. A sample is amplified under conditions that enrich for a subset of fragments that includes a collection of target sequences. The invention further provides for analysis of the above sample by hybridization to an array, which may be specifically designed to interrogate the collection of target sequences for particular characteristics, such as, for example, the presence or absence of one or more polymorphisms.
    Type: Application
    Filed: November 10, 2017
    Publication date: August 16, 2018
    Inventors: Hajime Matsuzaki, Xing Su, Sean Walsh, Giulia Kennedy, Rui Mei
  • Publication number: 20180187249
    Abstract: Apparatus and methods are disclosed for electrically active combinatorial-chemical (EACC) chips for biochemical analyte detection. An apparatus includes a substrate that has an array of regions defining multiple cells, wherein each of the cells includes a reaction cavity that contains multiple functional binding groups. A method of detecting an analyte providing the reaction cavity between a source and a drain or a pair of electrodes, applying a voltage and monitoring a parameter indicative of an analyte characteristic. A process of fabricating an EACC include bonding an analyte to the multiple functional binding groups of each reaction cavity, and forming an analyte sensing structure including the substrate.
    Type: Application
    Filed: October 6, 2017
    Publication date: July 5, 2018
    Inventors: Xing Su, Lei B. Sun, Jacque H. Georger, JR.
  • Patent number: 9863857
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: January 9, 2018
    Assignee: Intel Corporation
    Inventors: Xing Su, David J. Liu, Kai Wu, Kenneth B. Swartz, Mineo Yamakawa
  • Publication number: 20180003660
    Abstract: Methods, systems, and devices for detecting an analyte are disclosed and described. In one embodiment, a Metal Oxide Semiconductor (MOS) sensor pixel with a MOS active material is exposed to the analyte in the gas environment. The MOS sensor pixel is heated to a sequence of different predetermined temperatures via a heating element wherein the heating occurs for a period of time for each of the different predetermined temperatures. Response signals are detected, via an electrode, generated by the MOS sensor at each of the different predetermined temperatures. The response signals are assembled into sample data with data features for machine learning. The sample data is compared with data in a standards database. A composition of the analyte is identified based on the data features.
    Type: Application
    Filed: July 2, 2016
    Publication date: January 4, 2018
    Applicant: Intel Corporation
    Inventors: Noureddine Tayebi, Xing Su
  • Publication number: 20170363578
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises multiple zones such as a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Application
    Filed: June 26, 2017
    Publication date: December 21, 2017
    Inventors: Xing Su, Kai Wu, David J. Liu
  • Patent number: 9845490
    Abstract: The presently claimed invention provides for novel methods and kits for analyzing a collection of target sequences in a nucleic acid sample. A sample is amplified under conditions that enrich for a subset of fragments that includes a collection of target sequences. The invention further provides for analysis of the above sample by hybridization to an array, which may be specifically designed to interrogate the collection of target sequences for particular characteristics, such as, for example, the presence or absence of one or more polymorphisms.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: December 19, 2017
    Assignee: Affymetrix, Inc.
    Inventors: Hajime Matsuzaki, Xing Su, Sean Walsh, Giulia Kennedy, Rui Mei
  • Publication number: 20170335389
    Abstract: Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction regions containing electronic sensors to monitor changes in solutions contained in the reaction regions. Test and fill reaction schemes are disclosed that allow DNA to be sequenced. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
    Type: Application
    Filed: May 31, 2017
    Publication date: November 23, 2017
    Inventors: Xing SU, Kai WU
  • Publication number: 20170327877
    Abstract: The disclosure provides compositions and methods for amplifying and/or analyzing nucleic acids.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 16, 2017
    Inventors: Kai Wu, Mindy Su, Xing Su
  • Publication number: 20170327879
    Abstract: The disclosure provides compositions, methods, systems and kits for amplifying and assaying nucleic acids.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 16, 2017
    Inventors: Kai Wu, Mindy Su, Xing Su
  • Publication number: 20170327870
    Abstract: The disclosure provides compositions and methods for amplifying nucleic acids.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 16, 2017
    Inventors: Kai Wu, Mindy Su, Xing Su
  • Publication number: 20170234825
    Abstract: Various embodiments provide devices, methods, and systems for high throughput biomolecule detections using transducer arrays. In one embodiment, a transducer array made up of a plurality of transducer elements may be used to detect byproducts from chemical reactions that involve redox genic tags. Each transducer element may include at least a reaction chamber and a fingerprinting region configured to flow a fluid from the reaction chamber through the fingerprinting region. The reaction chamber can have a single molecule attachment region and the fingerprinting region can include at least one set of electrodes separated by a nanogap suitable for conducting redox cycling reactions. In embodiments, by flowing chamber contents, from a reaction of a latent redox tagged probe molecule, a catalyst, and a target molecule, in the reaction chamber of the at least one transducer element through the fingerprinting region, the redox cycling reactions can be detected to identify the redox-tagged biomolecules.
    Type: Application
    Filed: December 13, 2016
    Publication date: August 17, 2017
    Inventors: Oguz H. ELIBOL, Grace M. CREDO, Xing SU, Madoo VARMA, Jonathan S. DANIELS, Drew HALL, Handong LI, Noureddine TAYEBI, Kai WU
  • Patent number: 9695472
    Abstract: Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction regions containing electronic sensors to monitor changes in solutions contained in the reaction regions. Test and fill reaction schemes are disclosed that allow DNA to be sequenced. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 4, 2017
    Assignee: INTEL CORPORATION
    Inventors: Xing Su, Kai Wu
  • Publication number: 20170183727
    Abstract: Devices and methods for detecting, identifying, and sequencing, compounds, complexes, and molecules are described. Electronic detection is combined with optical excitation to determine the presence or identity of an analyte of interest. Embodiments of the invention additionally provide devices and methods that allow highly parallel nucleic acid sequence determination.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Xing Su, Mark Oldham
  • Patent number: 9689842
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises multiple zones such as a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: June 27, 2017
    Assignee: INTEL CORPORATION
    Inventors: Xing Su, Kai Wu, David J Liu
  • Patent number: 9671558
    Abstract: Methods for sequencing nucleic acids are presented. Sequencing is accomplished through the chemical amplification of the products of DNA synthesis and the detection of the chemically amplified products. In embodiments of the invention, a substrate is provided having a plurality of molecules of DNA to be sequenced attached and a plurality of molecules capable of chelating pyrophosphate ions attached, the DNA molecules to be sequenced are primed, and a next complementary nucleotide is incorporated and excised a plurality of times leading to the buildup of pyrophosphate ions locally around the DNA molecule to be sequenced. Pyrophosphate ions are captured by the substrate-attached chelators and optically detected to determine the identity of the next complementary nucleic acid in the DNA molecule to be sequenced.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 6, 2017
    Assignee: Intel Corporation
    Inventors: Xing Su, Liming Wang, Jianquan Liu, Kai Wu
  • Patent number: 9593371
    Abstract: Devices and methods for detecting, identifying, and sequencing, compounds, complexes, and molecules are described. Electronic detection is combined with optical excitation to determine the presence or identity of an analyte of interest. Embodiments of the invention additionally provide devices and methods that allow highly parallel nucleic acid sequence determination.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: March 14, 2017
    Assignee: INTEL CORPORATION
    Inventors: Xing Su, Mark Oldham
  • Patent number: 9551682
    Abstract: Various embodiments provide devices, methods, and systems for high throughput biomolecule detection using transducer arrays. In one embodiment, a transducer array made up of transducer elements may be used to detect byproducts from chemical reactions that involve redox genic tags. Each transducer element may include at least a reaction chamber and a fingerprinting region, configured to flow a fluid from the reaction chamber through the fingerprinting region. The reaction chamber can include a molecule attachment region and the fingerprinting region can include at least one set of electrodes separated by a nanogap for conducting redox cycling reactions. In embodiments, by flowing the chamber content obtained from a reaction of a latent redox tagged probe molecule, a catalyst, and a target molecule in the reaction chamber through the fingerprinting region, the redox cycling reactions can be detected to identify redox-tagged biomolecules.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 24, 2017
    Assignee: INTEL CORPORATION
    Inventors: Oguz H. Elibol, Grace M. Credo, Xing Su, Madoo Varma, Jonathan S. Daniels, Drew Hall, Handong Li, Noureddine Tayebi, Kai Wu