Patents by Inventor Xingye Zhou
Xingye Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240263854Abstract: A receiver, a receiver assembly and a heat pump system. The receiver includes a first pipe, a second pipe and a third pipe leading to the cavity of the receiver, wherein the first pipe, the second pipe and the third pipe connect to a first load unit, a second load unit and a cold and heat source unit, respectively.Type: ApplicationFiled: April 19, 2024Publication date: August 8, 2024Inventors: Xingye Zhou, Shuguang Zhang, Guangyu Shen, Xi Feng, Jinxiang Wang
-
Patent number: 12013158Abstract: A receiver, a receiver assembly and a heat pump system. The receiver includes a first pipe, a second pipe and a third pipe leading to the cavity of the receiver, wherein the first pipe, the second pipe and the third pipe connect to a first load unit, a second load unit and a cold and heat source unit, respectively.Type: GrantFiled: January 12, 2022Date of Patent: June 18, 2024Assignee: CARRIER CORPORATIONInventors: Xingye Zhou, Shuguang Zhang, Guangyu Shen, Xi Feng, Jinxiang Wang
-
Publication number: 20240068715Abstract: A heat pump system comprises: an indoor unit comprising an air conditioning unit and a refrigeration cabinet unit, and an outdoor unit comprising a compressor unit, an outdoor heat exchange unit, and a switching device for selectively connecting the exhaust end of the compressor unit to one of the air conditioning unit and the outdoor heat exchange unit, and connecting the suction end of the compressor unit to the other of the air conditioning unit and the outdoor heat exchange unit; wherein, the outdoor throttling device side of the outdoor heat exchange unit is respectively connected to the first port of the air conditioning unit and the first port of the refrigeration cabinet unit, and the second port of the refrigeration cabinet unit is connected to the suction end of the compressor unit.Type: ApplicationFiled: August 25, 2023Publication date: February 29, 2024Inventors: Jinxiang Wang, Xingye Zhou, Zehang Yu
-
Patent number: 11456387Abstract: The disclosure provides a normally-off gallium oxide field-effect transistor structure and a preparation method therefor, and relates to the technical field of semiconductor device. The normally-off gallium oxide field-effect transistor structure comprises a substrate layer and an n-type doped gallium oxide channel layer from bottom to top. The n-type doped gallium oxide channel layer is provided with a source, a drain, and a gate. The gate is located between the source and the drain. A no-electron channel region is provided in the n-type doped gallium oxide channel layer located below the gate.Type: GrantFiled: October 1, 2020Date of Patent: September 27, 2022Assignee: THE 13TH RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATIONInventors: Yuanjie Lv, Yuangang Wang, Xingye Zhou, Xin Tan, Xubo Song, Shixiong Liang, Zhihong Feng
-
Patent number: 11417779Abstract: The disclosure is applicable for the technical field of semiconductor devices manufacturing, and provides a gallium oxide SBD terminal structure. The gallium oxide SBD terminal structure comprises a cathode metal layer, an N+ high-concentration substrate layer, an N? low-concentration Ga2O3 epitaxial layer and an anode metal layer from bottom to top, wherein the N? low-concentration Ga2O3 epitaxial layer is within a range of certain thickness close to the anode metal layer; and a doping concentration below the anode metal layer is greater than a doping concentration on two sides of the anode metal layer. Namely, only a doping concentration of the part outside the corresponding area of the anode metal layer is changed, so that the breakdown voltage of the gallium oxide SBD terminal structure is improved under the condition of guaranteeing low on resistance.Type: GrantFiled: October 13, 2020Date of Patent: August 16, 2022Assignee: The 13th Research Institute of China Electronics Technology Group CorporationInventors: Yuanjie Lv, Yuangang Wang, Xingye Zhou, Xin Tan, Xubo Song, Xuefeng Zou, Shixiong Liang, Zhihong Feng
-
Publication number: 20220228785Abstract: A receiver, a receiver assembly and a heat pump system. The receiver includes a first pipe, a second pipe and a third pipe leading to the cavity of the receiver, wherein the first pipe, the second pipe and the third pipe connect to a first load unit, a second load unit and a cold and heat source unit, respectively.Type: ApplicationFiled: January 12, 2022Publication date: July 21, 2022Inventors: Xingye Zhou, Shuguang Zhang, Guangyu Shen, Xi Feng, Jinxiang Wang
-
Publication number: 20220190175Abstract: A ultraviolet detector includes a substrate; a first epitaxial layer that is a heavily doped epitaxial layer and located on the substrate, a second epitaxial layer located on the first epitaxial layer, where the second epitaxial layer is a lightly doped epitaxial layer, or a double-layer or multi-layer structure composed of at least one lightly doped epitaxial layer and at least one heavily doped epitaxial layer; an ohmic contact layer located on the second epitaxial layer or formed in the second epitaxial layer, where the ohmic contact layer is a graphical heavily doped layer; and a first metal electrode layer located on the ohmic contact layer.Type: ApplicationFiled: March 2, 2022Publication date: June 16, 2022Inventors: Xingye Zhou, Xin Tan, Yuanjie Lv, Yuangang Wang, Xubo Song, Shixiong Liang, Zhihong Feng
-
Patent number: 11349043Abstract: The disclosure is related to the technical field of semiconductors, and provides a method for manufacturing a tilted mesa and a method for manufacturing a detector. The method for manufacturing a tilted mesa comprises: coating a photoresist layer on a mesa region of a chip; heating the chip on which the photoresist layer is coated from a first preset temperature to a second preset temperature; performing etching processing on the heated chip, so as to manufacture a mesa having a preset tilting angle; and removing the photoresist layer on the mesa region of the chip after the mesa is manufactured.Type: GrantFiled: September 24, 2020Date of Patent: May 31, 2022Assignee: The 13th Research Institute of China Electronics Technology Group CorporationInventors: Xingye Zhou, Zhihong Feng, Yuanjie Lv, Xin Tan, Xubo Song, Jia Li, Yulong Fang, Yuangang Wang
-
Patent number: 11342474Abstract: A method for preparing an avalanche photodiode includes preparing a mesa on a wafer, growing a sacrificial layer on an upper surface of the wafer and a side surface of the mesa, removing the sacrificial layer in an ohmic contact electrode region of the wafer, preparing an ohmic contact electrode in the ohmic contact electrode region of the wafer, removing the sacrificial layer in a non-mesa region of the wafer, growing a passivation layer on the upper surface of the wafer and the side surface of the mesa, removing the passivation layer on the upper surface of the mesa of the wafer and the passivation layer in the non-mesa region of the wafer corresponding to the ohmic contact electrode region, and removing the sacrificial layer on the upper surface of the mesa of the wafer.Type: GrantFiled: September 24, 2020Date of Patent: May 24, 2022Assignee: The 13th Research Institute of China Electronics Technology Group CorporationInventors: Xingye Zhou, Zhihong Feng, Yuanjie Lv, Xin Tan, Yuangang Wang, Xubo Song, Jia Li, Yulong Fang
-
Patent number: 11282977Abstract: The disclosure provides a silicon carbide detector and a preparation method therefor. The silicon carbide detector comprises: a wafer, the wafer sequentially comprises, from bottom to top, a substrate, a silicon carbide P+ layer, an N-type silicon carbide insertion layer, an N+ type silicon carbide multiplication layer, an N-type silicon carbide absorption layer and a silicon carbide N+ layer; the doping concentration of the N-type silicon carbide insertion layer gradually increases from bottom to top, and the doping concentration of the N-type silicon carbide absorption layer gradually decreases from bottom to top; a mesa is etched on the wafer, and the mesa is etched to an upper surface of the silicon carbide P+ layer; an N-type electrode is arranged on an upper surface of the mesa, and a P-type electrode is arranged on an upper surface of a non-mesa region.Type: GrantFiled: September 25, 2020Date of Patent: March 22, 2022Assignee: The 13th Research institute of China Electronics Technolegy Group CorporationInventors: Xingye Zhou, Zhihong Feng, Yuanjie Lv, Xin Tan, Yuangang Wang, Xubo Song, Jia Li, Yulong Fang
-
Patent number: 11244821Abstract: The present disclosure discloses a method for preparing an isolation area of a gallium oxide device, the method comprising: depositing a mask layer on a gallium oxide material; removing a preset portion region of the mask layer; preparing an isolation area in a position, corresponding to the preset portion region, on the gallium oxide material by using a high-temperature oxidation technique, with the isolation area being located between active areas of the gallium oxide device; and removing the remaining mask layer on the gallium oxide material. In the disclosure, the isolation area is prepared by using the high-temperature oxidation technique, which prevents damage to the gallium oxide device during the preparation of the isolation area, thereby achieving isolation between the active areas of the gallium oxide device.Type: GrantFiled: September 29, 2020Date of Patent: February 8, 2022Assignee: The 13th Research Institute of China Electronics Technology Group CorporationInventors: Yuanjie Lv, Yuangang Wang, Xingye Zhou, Xin Tan, Xubo Song, Shixiong Liang, Zhihong Feng
-
Patent number: 11127849Abstract: The present disclosure discloses an enhancement-mode field effect transistor. This enhancement-mode field effect transistor includes a substrate, a channel layer formed on an upper surface of the substrate, a source electrode and a drain electrode respectively formed on both sides of the channel layer, and a gate electrode formed on an upper surface of the channel layer, a region outside the corresponding region of the gate electrode in the channel layer is provided with a carrier-free region. Carriers are absent in the carrier-free region, and carriers are present in the remaining portion of the channel layer. The carrier-free region is not disposed below the gate electrode, but is disposed outside the corresponding region of the gate electrode in the channel layer, and the threshold voltage of the device can be regulated by regulating the width and number of the carrier-free region.Type: GrantFiled: December 27, 2017Date of Patent: September 21, 2021Assignee: The 13th Research Institute of China Electronics Technology Group CorporationInventors: Yuanjie Lv, Yuangang Wang, Xubo Song, Xin Tan, Xingye Zhou, Zhihong Feng
-
Publication number: 20210098628Abstract: The disclosure provides a normally-off gallium oxide field-effect transistor structure and a preparation method therefor, and relates to the technical field of semiconductor device. The normally-off gallium oxide field-effect transistor structure comprises a substrate layer and an n-type doped gallium oxide channel layer from bottom to top. The n-type doped gallium oxide channel layer is provided with a source, a drain, and a gate. The gate is located between the source and the drain. A no-electron channel region is provided in the n-type doped gallium oxide channel layer located below the gate.Type: ApplicationFiled: October 1, 2020Publication date: April 1, 2021Inventors: Yuanjie Lv, Yuangang Wang, Xingye Zhou, Xin Tan, Xubo Song, Shixiong Liang, Zhihong Feng
-
Publication number: 20210043778Abstract: The disclosure is applicable for the technical field of semiconductor devices manufacturing, and provides a gallium oxide SBD terminal structure. The gallium oxide SBD terminal structure comprises a cathode metal layer, an N+ high-concentration substrate layer, an N? low-concentration Ga2O3 epitaxial layer and an anode metal layer from bottom to top, wherein the N? low-concentration Ga2O3 epitaxial layer is within a range of certain thickness close to the anode metal layer; and a doping concentration below the anode metal layer is greater than a doping concentration on two sides of the anode metal layer. Namely, only a doping concentration of the part outside the corresponding area of the anode metal layer is changed, so that the breakdown voltage of the gallium oxide SBD terminal structure is improved under the condition of guaranteeing low on resistance.Type: ApplicationFiled: October 13, 2020Publication date: February 11, 2021Inventors: Yuanjie LV, Yuangang Wang, Xingye Zhou, Xin Tan, Xubo Song, Xuefeng Zou, Shixiong Liang, Zhihong Feng
-
Publication number: 20210036177Abstract: A method for preparing an avalanche photodiode includes preparing a mesa on a wafer, growing a sacrificial layer on an upper surface of the wafer and a side surface of the mesa, removing the sacrificial layer in an ohmic contact electrode region of the wafer, preparing an ohmic contact electrode in the ohmic contact electrode region of the wafer, removing the sacrificial layer in a non-mesa region of the wafer, growing a passivation layer on the upper surface of the wafer and the side surface of the mesa, removing the passivation layer on the upper surface of the mesa of the wafer and the passivation layer in the non-mesa region of the wafer corresponding to the ohmic contact electrode region, and removing the sacrificial layer on the upper surface of the mesa of the wafer.Type: ApplicationFiled: September 24, 2020Publication date: February 4, 2021Inventors: Xingye Zhou, Zhihong Feng, Yuanjie LV, Xin Tan, Yuangang Wang, Xubo Song, Jia Li, Yulong Fang
-
Publication number: 20210020802Abstract: The disclosure provides a silicon carbide detector and a preparation method therefor. The silicon carbide detector comprises: a wafer, the wafer sequentially comprises, from bottom to top, a substrate, a silicon carbide P+ layer, an N-type silicon carbide insertion layer, an N+ type silicon carbide multiplication layer, an N-type silicon carbide absorption layer and a silicon carbide N+ layer; the doping concentration of the N-type silicon carbide insertion layer gradually increases from bottom to top, and the doping concentration of the N-type silicon carbide absorption layer gradually decreases from bottom to top; a mesa is etched on the wafer, and the mesa is etched to an upper surface of the silicon carbide P+ layer; an N-type electrode is arranged on an upper surface of the mesa, and a P-type electrode is arranged on an upper surface of a non-mesa region.Type: ApplicationFiled: September 25, 2020Publication date: January 21, 2021Inventors: Xingye Zhou, Zhihong Feng, Yuanjie LV, Xin Tan, Yuangang Wang, Xubo Song, Jia Li, Yulong Fang
-
Publication number: 20210020801Abstract: The disclosure is related to the technical field of semiconductors, and provides a method for manufacturing a tilted mesa and a method for manufacturing a detector. The method for manufacturing a tilted mesa comprises: coating a photoresist layer on a mesa region of a chip; heating the chip on which the photoresist layer is coated from a first preset temperature to a second preset temperature; performing etching processing on the heated chip, so as to manufacture a mesa having a preset tilting angle; and removing the photoresist layer on the mesa region of the chip after the mesa is manufactured.Type: ApplicationFiled: September 24, 2020Publication date: January 21, 2021Inventors: Xingye Zhou, Zhihong Feng, Yuanjie LV, Xin Tan, Xubo Song, Jia Li, Yulong Fang, Yuangang Wang
-
Publication number: 20210013027Abstract: The present disclosure discloses a method for preparing an isolation area of a gallium oxide device, the method comprising: depositing a mask layer on a gallium oxide material; removing a preset portion region of the mask layer; preparing an isolation area in a position, corresponding to the preset portion region, on the gallium oxide material by using a high-temperature oxidation technique, with the isolation area being located between active areas of the gallium oxide device; and removing the remaining mask layer on the gallium oxide material. In the disclosure, the isolation area is prepared by using the high-temperature oxidation technique, which prevents damage to the gallium oxide device during the preparation of the isolation area, thereby achieving isolation between the active areas of the gallium oxide device.Type: ApplicationFiled: September 29, 2020Publication date: January 14, 2021Inventors: Yuanjie LV, Yuangang Wang, Xingye Zhou, Xin Tan, Xubo Song, Shixiong Liang, Zhihong Feng
-
Patent number: 10854741Abstract: An enhanced HFET, comprising a HFET device body.Type: GrantFiled: December 11, 2017Date of Patent: December 1, 2020Assignee: THE 13TH RESEARCH INSTITUTE OF CHINA ELECTRONICSInventors: Yuangang Wang, Zhihong Feng, Yuanjie Lv, Xin Tan, Xubo Song, Xingye Zhou, Yulong Fang, Guodong Gu, Hongyu Guo, Shujun Cai
-
Publication number: 20200312992Abstract: The present disclosure relates to semiconductor devices, and in particular, to an enhancement-mode field effect transistor. This enhancement-mode field effect transistor includes a substrate, a channel layer formed on an upper surface of the substrate, a source electrode and a drain electrode respectively formed on both sides of the channel layer, and a gate electrode formed on an upper surface of the channel layer, a region outside the corresponding region of the gate electrode in the channel layer is provided with a carrier-free region. Carriers are absent in the carrier-free region, and carriers are present in the remaining portion of the channel layer.Type: ApplicationFiled: December 27, 2017Publication date: October 1, 2020Inventors: Yuanjie LV, Yuangang Wang, Xubo Song, Xin Tan, Xingye Zhou, Zhihong Feng