Patents by Inventor Xinyu Du

Xinyu Du has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210291660
    Abstract: A display assembly for a vehicle includes an electronic display and an adjustment mechanism. The electronic display is configured to be mounted to an instrument panel of the vehicle. The electronic display includes multiple screens and at least one hinge disposed between the screens. The electronic display is configured to be folded at the at least one hinge by pivoting at least one of the screens about the at least one hinge to adjust a viewing angle of an occupant in the vehicle relative to the at least one screen. The adjustment mechanism is configured to maintain the at least one screen in any one of a plurality of positions when the electronic display is folded at the at least one hinge by pivoting the at least one screen about the at least one hinge to adjust the at least one screen to the one position.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 23, 2021
    Inventors: Joseph F. SZCZERBA, Xinyu Du, Paul E. Krajewski
  • Patent number: 11054339
    Abstract: A machine bearing disposed on a rotatable member, such as may be present on a vehicle, is described. A method for monitoring a state of health of the machine bearing includes monitoring, via a microphone, an acoustic signal, and coincidently determining a rotational speed of the rotatable member associated with the machine bearing. The sound spectrum is correlated to the rotational speed of the rotating member, and a time-frequency analysis is executed to determine a sound spectrum. The sound spectrum is transformed to a residual spectrum. A first feature associated with a first frequency band and a second feature associated with a second frequency band are extracted from the residual spectrum. The state of health associated with the machine bearing is detected based upon the first and second features, and is communicated to a second controller.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 6, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Jianshe Feng, Xinyu Du, Mutasim Salman, Kevin A. Cansiani
  • Patent number: 11001272
    Abstract: A method for controlling a vehicle includes: receiving, by a controller, route data, wherein the route data is continuously updated while the vehicle is moving, and the vehicle includes a plurality of vehicle operating modes; receiving, by the controller, feature data, wherein the feature data is information about a plurality of features needed for each of the plurality of vehicle operating modes; determining, by the controller, a plurality of ranges for each of the plurality of vehicle operating modes, wherein each of the plurality of ranges is a function of the route data and the feature data for each of the plurality of vehicle operating modes; and commanding, by the controller, a user interface to display a list of range-mode combinations, wherein the list of range-mode combinations includes the plurality of ranges for each of the plurality of vehicle operating modes.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: May 11, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Unmesh Dutta Bordoloi, Shige Wang, Xinyu Du
  • Publication number: 20210129615
    Abstract: A system for testing a suspension system of a vehicle includes an inertial measurement module and a suspension fault detection module. The inertial measurement module is configured to, while the vehicle is not moving, collect sensor data from one or more inertial measurement sensors for different states of the suspension system. The sensor data is indicative of inertial states of the vehicle while the suspension system is in each of the different states. The suspension fault detection module is configured to, based on the sensor data and a set of thresholds, determine whether a fault exists with the suspension system, isolate and identify the fault, and perform a countermeasure based on the detection of the fault.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 6, 2021
    Inventors: Xinyu DU, Lichao MAI, Brian K. SAYLOR, Arvind SHARMA, Kevin A. CANSIANI
  • Publication number: 20210101607
    Abstract: A system includes an assessment module and a training module. The assessment module is configured to receive event data about an event associated with a subsystem of a vehicle. The assessment module is configured to determine deviations between reference data for the subsystem indicating normal operation of the subsystem and portions of the event data that precede and follow the event. The assessment module is configured to determine whether the event data indicates a fault associated with the subsystem by comparing the deviations to a threshold deviation. The training module is configured to update a model trained to identify faults in vehicles to identify the event as a fault associated with the subsystem of the vehicle based on the event data in response to the deviations indicating a fault associated with the subsystem.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 8, 2021
    Inventors: Xinyu DU, Atul NAGOSE, Joshua J. SANCHEZ, Paul E. KRAJEWSKI
  • Publication number: 20210086576
    Abstract: In various embodiments, methods, systems, and vehicles are provided for determining a fault in a suspension system of a vehicle. In an exemplary embodiment, sensor data is obtained via one or more vehicle sensors during operation of the vehicle; a one or more first coefficients for the vehicle are calculated via a processor using a pitch model with the sensor data; one or more second coefficients for the vehicle are calculated via the processor using a roll model with the sensor data; and a fault in the suspension system is determined via the processor using the first coefficients and the second coefficients.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xinyu Du, Mutasim Salman, Lichao Mai, Brian K. Saylor, Kevin A. Cansiani
  • Patent number: 10946865
    Abstract: A power circuit includes a power source and a plurality components that connect the power source to a subsystem of a vehicle. A fault detection module receives voltages at an output of the power source and at an input of the subsystem and current drawn by the subsystem, and distinguishes between a power source failure, a permanent and an intermittent disconnection of one of the components from the power source, and a loose connection between the power circuit and the subsystem or corrosion of one of the components, based on analyses of the voltages and the current. A fault mitigation module mitigates the first two faults by switching to a different power source in the vehicle to supply power to the subsystem, and mitigates the third and fourth faults by reducing the power consumed by the subsystem and by generating a warning regarding the intermittent disconnection or loose connection.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: March 16, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wen-Chiao Lin, Xinyu Du, Alexander M. Allan, Robert A. De Stefano, Xiaofeng Mao
  • Publication number: 20210074087
    Abstract: A method and system of diagnosing and suggesting least probable faults for an exhibited vehicle failure. The method includes initiating a vehicle health management (VHM) algorithm to monitor a state of health (SOH) for at least one vehicle component at each vehicle operating event over a predetermined time period. The VHM algorithm determines at least one of a Green SOH, a Yellow SOH, and a Red SOH designation with a confidence level for the at least one vehicle component; calculating a number of Green SOH designations (Ncalculated) over the predetermined time period; and upon an exhibited vehicle failure, providing a least probable cause indication for the at least one component when a set of conditions are met. The set of conditions includes (i) Ncalculated is equal to or greater than a predetermined number of Green SOH designations and (ii) no Yellow SOH and Red SOH designations are present.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 11, 2021
    Inventors: Shengbing Jiang, Xinyu Du, Yilu Zhang, VARSHA K. SADEKAR, Joshua J. Sanchez, Paul E. Krajewski
  • Patent number: 10940736
    Abstract: The present disclosure provides a sway bar for a suspension system of a motor vehicle. The sway bar includes a first lever arm for attachment to a left wheel suspension component and a second lever arm for attachment to a right wheel suspension component. The sway bar further includes a torsion spring device in connection between the first lever arm and the second lever arm to provide variable torsional stiffness. The torsion spring device includes a first torsion bar, a second torsion bar, and a clutch connected to the first torsion bar and the second torsion bar. The clutch is configured to move between a disengaged position and an engaged position where both of the first and second torsion bars transmit torque between the first and second lever arms to provide torsional stiffness.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 9, 2021
    Assignee: GM GLOBAL TECHNOLOGY LLC
    Inventors: Timothy J. Romelhardt, Xinyu Du
  • Publication number: 20200376918
    Abstract: The present disclosure provides a sway bar for a suspension system of a motor vehicle. The sway bar includes a first lever arm for attachment to a left wheel suspension component and a second lever arm for attachment to a right wheel suspension component. The sway bar further includes a torsion spring device in connection between the first lever arm and the second lever arm to provide variable torsional stiffness. The torsion spring device includes a first torsion bar, a second torsion bar, and a clutch connected to the first torsion bar and the second torsion bar. The clutch is configured to move between a disengaged position and an engaged position where both of the first and second torsion bars transmit torque between the first and second lever arms to provide torsional stiffness.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Timothy J. Romelhardt, Xinyu Du
  • Patent number: 10852340
    Abstract: A vehicle electronics high-resistance fault diagnosis system is provided, as well as a method of detecting and isolating a high-resistance fault in vehicle electronics of a vehicle. The method includes the steps of determining electrical data for one or more portions of the vehicle electronics, wherein the electrical data includes voltage data and/or current data concerning the one or more portions of the vehicle electronics; calculating a resistance for a plurality of resistance sets of the vehicle electronics based on the electrical data, wherein each of the plurality of resistance sets includes one or more electrical components; obtaining a resistance set threshold for each of the plurality of resistance sets of the vehicle electronics; for each of the plurality of resistance sets, evaluating whether the resistance of the resistance set exceeds the resistance set threshold; and based on the evaluating step, identifying one or more high-resistance fault candidates.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: December 1, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xinyu Du, Wen-Chiao Lin, Yilu Zhang
  • Publication number: 20200339140
    Abstract: System and method for controlling operation of a vehicle in real-time with a supervisory control module. A fault detection module is configured to receive respective sensor data from one or more sensors in communication with the vehicle and generate fault data. The supervisory control module includes at least one fault-tolerant controller configured to respond to a plurality of faults. The supervisory control module is configured to receive the fault data. When at least one fault is detected from the plurality of faults, the supervisory control module is configured to employ the fault-tolerant controller to generate at least one selected command. The selected command is transmitted to one or more device controllers for delivery to at least one of the respective components of the vehicle. Operation of the vehicle is controlled based in part on the selected command.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Wen-Chiao Lin, Xinyu Du, Xiaoyu Huang, Paul E. Krajewski
  • Patent number: 10800363
    Abstract: A system includes control modules, a low-voltage communications bus, e.g., a CAN bus of a vehicle, a voltage sensor that measures a bus voltage and outputs 2.5-3.5 VDC high-data and 1.5-2.5 VDC low-data, and a host electronic control unit (ECU). The host ECU detects a recoverable fault using a data pattern in the bus voltage data when the data is outside of a calibrated range, and recalibrates the sensor. Recalibration may be by adjustment to a scaling factor and/or a bias value. Non-recoverable “stuck-at-fault”-type or “out-of-range”-type faults may be detected using the pattern, as may be a ground offset fault. A method includes measuring the bus voltage using the sensor, comparing the output data to a range to detect the fault, and isolating a sensor fault as a recoverable fault using the data pattern when the data is outside of the range. The sensor is then be recalibrated.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 13, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Xinyu Du, Shengbing Jiang, Dongyi Zhou, David Gumpert, Atul Nagose, Rod Niner, Aaron D. Motyl
  • Publication number: 20200247428
    Abstract: A method for controlling a vehicle includes: receiving, by a controller, route data, wherein the route data is continuously updated while the vehicle is moving, and the vehicle includes a plurality of vehicle operating modes; receiving, by the controller, feature data, wherein the feature data is information about a plurality of features needed for each of the plurality of vehicle operating modes; determining, by the controller, a plurality of ranges for each of the plurality of vehicle operating modes, wherein each of the plurality of ranges is a function of the route data and the feature data for each of the plurality of vehicle operating modes; and commanding, by the controller, a user interface to display a list of range-mode combinations, wherein the list of range-mode combinations includes the plurality of ranges for each of the plurality of vehicle operating modes.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 6, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Unmesh Dutta Bordoloi, Shige Wang, Xinyu Du
  • Publication number: 20200234513
    Abstract: An automatic fault isolation and diagnosis system includes a cloud-based data system having multiple machine-readable troubleshooting procedures stored therein. A vehicle fault code is generated by one of multiple vehicle control devices of a vehicle platform. The fault code defines an issue with at least one system or component of the vehicle platform. A data transfer device within the vehicle platform receives the fault code and forwards the fault code to the cloud-based data system. The fault code is received and analyzed in the cloud-based data system to initially determine if the fault code is directed to and can be automatically corrected by one of the stored machine-readable troubleshooting procedures.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 23, 2020
    Inventors: Issa Aljanabi, Xinyu Du
  • Publication number: 20200198587
    Abstract: A method of monitoring a windshield of a vehicle including: capturing an image of a windshield of a vehicle; determining that debris is located on the windshield in response to the image of the windshield; determining a location of the debris on the windshield; determining to remove the debris from the windshield; and actuating a drive motor of a wiper system to clean the location, the drive motor being operably connected to a wiper arm having a wiper blade.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Inventors: Xinyu Du, Paul E. Krajewski
  • Publication number: 20200158772
    Abstract: A vehicle electronics high-resistance fault diagnosis system is provided, as well as a method of detecting and isolating a high-resistance fault in vehicle electronics of a vehicle. The method includes the steps of determining electrical data for one or more portions of the vehicle electronics, wherein the electrical data includes voltage data and/or current data concerning the one or more portions of the vehicle electronics; calculating a resistance for a plurality of resistance sets of the vehicle electronics based on the electrical data, wherein each of the plurality of resistance sets includes one or more electrical components; obtaining a resistance set threshold for each of the plurality of resistance sets of the vehicle electronics; for each of the plurality of resistance sets, evaluating whether the resistance of the resistance set exceeds the resistance set threshold; and based on the evaluating step, identifying one or more high-resistance fault candidates.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Inventors: Xinyu Du, Wen-Chiao Lin, Yilu Zhang
  • Publication number: 20200149993
    Abstract: A machine bearing disposed on a rotatable member, such as may be present on a vehicle, is described. A method for monitoring a state of health of the machine bearing includes monitoring, via a microphone, an acoustic signal, and coincidently determining a rotational speed of the rotatable member associated with the machine bearing. The sound spectrum is correlated to the rotational speed of the rotating member, and a time-frequency analysis is executed to determine a sound spectrum. The sound spectrum is transformed to a residual spectrum. A first feature associated with a first frequency band and a second feature associated with a second frequency band are extracted from the residual spectrum. The state of health associated with the machine bearing is detected based upon the first and second features, and is communicated to a second controller.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Jianshe Feng, Xinyu Du, Mutasim Salman, Kevin A. Cansiani
  • Patent number: 10615585
    Abstract: A method for mitigating an electrical actuator fault in a system containing multiple actuators includes: applying multiple predetermined conditions to each of multiple actuators in a vehicle system to identify when at least one of the multiple actuators is in a faulted condition; and increasing an input voltage to all of the actuators to increase an output of the at least one of the multiple actuators in the faulted condition to mitigate the faulted condition.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yao Hu, Xinyu Du, Joshua J. Sanchez, Paul E. Krajewski
  • Patent number: 10600257
    Abstract: An autonomic vehicle control system is described, and includes a vehicle spatial monitoring system including a subject spatial sensor that is disposed to monitor a spatial environment proximal to the autonomous vehicle. A controller is in communication with the subject spatial sensor, and the controller includes a processor and a memory device including an instruction set. The instruction set is executable to evaluate the subject spatial sensor, which includes determining first, second, third, fourth and fifth SOH (state of health) parameters associated with the subject spatial sensor, and determining an integrated SOH parameter for the subject spatial sensor based thereupon.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 24, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Shengbing Jiang, Mutasim A. Salman, Xinyu Du, Wen-Chiao Lin, Jinsong Wang, Shuqing Zeng