Patents by Inventor Xiuyu Cai

Xiuyu Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170148894
    Abstract: A semiconductor structure formed based on forming a dummy gate stack on a substrate including a sacrificial spacer on the peripheral of the dummy gate stack. The dummy gate stack is partially recessed. The sacrificial spacer is etched down to the partially recessed dummy gate stack. Remaining portions of the sacrificial spacer are etched leaving gaps around and above a remaining portion of the dummy gate stack. A first low-k spacer portion and a second low-k spacer portion are formed to fill gaps around the dummy gate stack and extend vertically along a sidewall of a dummy gate cavity. The first low-k spacer portion and the second low-k spacer portion are etched. A poly pull process is performed on the dummy gate stack. A replacement metal gate (RMG) structure is formed with the first low-k spacer portion and the second low-k spacer portion.
    Type: Application
    Filed: November 25, 2015
    Publication date: May 25, 2017
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie
  • Patent number: 9660050
    Abstract: A semiconductor structure formed based on forming a dummy gate stack on a substrate including a sacrificial spacer on the peripheral of the dummy gate stack. The dummy gate stack is partially recessed. The sacrificial spacer is etched down to the partially recessed dummy gate stack. Remaining portions of the sacrificial spacer are etched leaving gaps around and above a remaining portion of the dummy gate stack. A first low-k spacer portion and a second low-k spacer portion are formed to fill gaps around the dummy gate stack and extend vertically along a sidewall of a dummy gate cavity. The first low-k spacer portion and the second low-k spacer portion are etched. A poly pull process is performed on the dummy gate stack. A replacement metal gate (RMG) structure is formed with the first low-k spacer portion and the second low-k spacer portion.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: May 23, 2017
    Assignee: International Business Machines Corporation
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie
  • Patent number: 9660083
    Abstract: A FinFET transistor includes a fin of semiconductor material with a transistor gate electrode extending over a channel region. Raised source and drain regions of first epitaxial growth material extending from the fin on either side of the transistor gate electrode. Source and drain contact openings extend through a pre-metallization dielectric material to reach the raised source and drain regions. Source and drain contact regions of second epitaxial growth material extend from the first epitaxial growth material at the bottom of the source and drain contact openings. A metal material fills the source and drain contact openings to form source and drain contacts, respectively, with the source and drain contact regions. The drain contact region may be offset from the transistor gate electrode by an offset distance sufficient to provide a laterally diffused metal oxide semiconductor (LDMOS) configuration within the raised source region of first epitaxial growth material.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: May 23, 2017
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Liu, Ruilong Xie, Chun-Chen Yeh, Xiuyu Cai
  • Patent number: 9660057
    Abstract: Methods and structures for forming a reduced resistance region of a finFET are described. According to some aspects, a dummy gate and first gate spacer may be formed above a fin comprising a first semiconductor composition. At least a portion of source and drain regions of the fin may be removed, and a second semiconductor composition may be formed in the source and drain regions in contact with the first semiconductor composition. A second gate spacer may be formed covering the first gate spacer. The methods may be used to form finFETs having reduced resistance at source and drain junctions.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: May 23, 2017
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Qing Liu, Ruilong Xie, Chun-chen Yeh, Xiuyu Cai, Kejia Wang
  • Publication number: 20170140994
    Abstract: A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Xiuyu Cai, Kangguo Cheng, Johnathan E. Faltermeier, Ali Khakifirooz, Theodorus E. Standaert, Ruilong Xie
  • Patent number: 9653579
    Abstract: A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 16, 2017
    Assignees: STMicroelectronics, Inc., GLOBALFOUNDRIES Inc, International Business Machines Corporation
    Inventors: Qing Liu, Ruilong Xie, Xiuyu Cai, Chun-chen Yeh, Kejia Wang
  • Publication number: 20170117274
    Abstract: Semiconductor devices and methods for making the same includes conformally forming a first spacer on a plurality of fins. A second spacer is conformally formed on the first spacer, the second spacer being formed from a different material from the first spacer. The plurality of fins are etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched plurality of fins to fill the fin cavity.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 27, 2017
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie, Tenko Yamashita
  • Publication number: 20170117276
    Abstract: Semiconductor devices and methods for making the same includes conformally forming a first spacer on multiple fins. A second spacer is conformally formed on the first spacer, the second spacer being formed from a different material from the first spacer. The fins are etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched fins to fill the fin cavity.
    Type: Application
    Filed: November 4, 2016
    Publication date: April 27, 2017
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie, Tenko Yamashita
  • Patent number: 9633906
    Abstract: A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: April 25, 2017
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Xiuyu Cai, Kangguo Cheng, Johnathan E. Faltermeier, Ali Khakifirooz, Theodorus E. Standaert, Ruilong Xie
  • Patent number: 9634115
    Abstract: One illustrative method disclosed herein includes, among other things, forming a first high-k protection layer on the source/drain regions and adjacent the sidewall spacers of a transistor device, removing a sacrificial gate structure positioned between the sidewall spacers so as to thereby define a replacement gate cavity, forming a replacement gate structure in the replacement gate cavity, forming a second high-k protection layer above an upper surface of the spacers, above an upper surface of the replacement gate structure and above the first high-k protection layer, and removing portions of the second high-k protection layer positioned above the first high-k protection layer.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: April 25, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Chanro Park, Xiuyu Cai
  • Patent number: 9634004
    Abstract: Semiconductor devices include a passivating layer over a pair of fins. A barrier extends through the passivating layer and between the pair of fins and that electrically isolates the fins. Electrical contacts are formed through the passivating layer to the fins. The electrical contacts directly contact sidewalls of the barrier.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 25, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC.
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie, Tenko Yamashita
  • Publication number: 20170110583
    Abstract: A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate comprising an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about le18 to about le20 atoms/cm3 and contacting the epitaxial contacts.
    Type: Application
    Filed: January 2, 2017
    Publication date: April 20, 2017
    Inventors: Xiuyu Cai, Qing Liu, Kejia Wang, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9627377
    Abstract: Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: April 18, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Marc Adam Bergendahl, Kangguo Cheng, David Vaclav Horak, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Chih-Chao Yang, Charles William Koburger, III, Xiuyu Cai, Ruilong Xie
  • Publication number: 20170103917
    Abstract: A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
    Type: Application
    Filed: July 28, 2016
    Publication date: April 13, 2017
    Inventors: XIUYU CAI, CHUN-CHEN YEH, QING LIU, RUILONG XIE
  • Publication number: 20170104082
    Abstract: A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Inventors: XIUYU CAI, CHUN-CHEN YEH, QING LIU, RUILONG XIE
  • Patent number: 9620505
    Abstract: A semiconductor device which includes: a substrate; a first set of fins above the substrate of a first semiconductor material; a second set of fins above the substrate and of a second semiconductor material different than the first semiconductor material; and an isolation region positioned between the first and second sets of fins, the isolation region having a nitride layer. The isolation region may be an isolation pillar or an isolation trench.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: April 11, 2017
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc., GlobalFoundries Inc.
    Inventors: Qing Liu, Xiuyu Cai, Ruilong Xie, Chun-chen Yeh, Kejia Wang, Daniel Chanemougame
  • Publication number: 20170092645
    Abstract: A method for fabricating a field effect transistor device comprises forming a fin on a substrate, forming a first dummy gate stack and a second dummy gate stack over the fin, forming spacers adjacent to the fin, the first dummy gate stack, and the second dummy gate stack, etching to remove portions of the fin and form a first cavity partially defined by the spacers, depositing an insulator material in the first cavity, patterning a mask over the first dummy gate stack and portions of the fin, etching to remove exposed portions of the insulator material, and epitaxially growing a first semiconductor material on exposed portions of the fin.
    Type: Application
    Filed: June 1, 2016
    Publication date: March 30, 2017
    Inventors: Xiuyu Cai, Sanjay C. Mehta, Tenko Yamashita
  • Publication number: 20170077247
    Abstract: One method disclosed includes forming a final gate structure in a gate cavity that is laterally defined by sidewall spacers, removing a portion of the sidewall spacers to define recessed sidewall spacers, removing a portion of the final gate structure to define a recessed final gate structure and forming an etch stop on the recessed sidewall spacers and the recessed final gate structure. A transistor device disclosed herein includes a final gate structure that has an upper surface positioned at a first height level above a surface of a substrate, sidewall spacers positioned adjacent the final gate structure, the sidewall spacers having an upper surface that is positioned at a second, greater height level above the substrate, an etch stop layer formed on the upper surfaces of the sidewall spacers and the final gate structure, and a conductive contact that is conductively coupled to a contact region of the transistor.
    Type: Application
    Filed: October 29, 2014
    Publication date: March 16, 2017
    Inventors: Ruilong Xie, Xiuyu Cai
  • Publication number: 20170077306
    Abstract: A vertical slit transistor includes raised source, drain, and channel regions in a semiconductor substrate. Two gate electrodes are positioned adjacent respective sidewalls of the semiconductor substrate. A dielectric material separates the gate electrodes from the source and drain regions.
    Type: Application
    Filed: November 3, 2016
    Publication date: March 16, 2017
    Inventors: Qing Liu, Xiuyu Cai, Chun-chen Yeh, Ruilong Xie
  • Publication number: 20170069627
    Abstract: Semicondcutor devices include a passivating layer over a pair of fins. A barrier extends through the passivating layer and between the pair of fins and that electrically isolates the fins. Electrical contacts are formed through the passivating layer to the fins. The electrical contacts directly contact sidewalls of the barrier.
    Type: Application
    Filed: June 14, 2016
    Publication date: March 9, 2017
    Inventors: Xiuyu Cai, Kangguo Cheng, Ali Khakifirooz, Ruilong Xie, Tenko Yamashita