Patents by Inventor Xiwang Qi

Xiwang Qi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7989118
    Abstract: A method of manufacturing a fuel cell stack is provided. The method provides forming an inspectable preassembly of multiple fuel cell assemblies that may be termed a pseudostack. Each fuel cell in the pseudostack has permanent electrical interconnections and sealing connections on only one of the two electrodes, namely an anode layer or a cathode layer. For example, an anode interconnect may be firmly attached to the anode layer by means of a bonding agent and a sealing agent used to seal passages on the anode layer of the fuel cell. Alternatively, seals and permanent electrical connections may be made on the cathode layer of the fuel cell, and not on the anode layer.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Richard Scott Bourgeois, Richard Louis Hart, Sauri Gudlavalleti, Shu Ching Quek, Andrew Philip Shapiro, Rong Fan, Dacong Weng, Xiwang Qi
  • Publication number: 20110143930
    Abstract: A method of tuning the size of an nano-active material on a nano-carrier material comprising: providing a starting portion of a carrier material and a starting portion of an active material in a first ratio; adjusting the first ratio, forming a second ratio, thereby tuning the ratio of active material and carrier material; combining the portion of the active material in a vapor phase and the portion of the carrier material in a vapor phase, forming a conglomerate in a vapor phase; and changing the phase of the conglomerate, thereby forming nano-spheres comprising a nano-carrier material decorated with a nano-active material, wherein the size of the nano-active material is dependent upon the second ratio.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: SDCMATERIALS, INC.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, David Leamon
  • Publication number: 20110143933
    Abstract: Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Publication number: 20110143915
    Abstract: A nanoparticle comprises a nano-active material and a nano-support. In some embodiments, the nano-active material is platinum and the nano-support is alumina. Pinning and affixing the nano-active material to the nano-support is achieved by using a high temperature condensation technology. In some embodiments, the high temperature condensation technology is plasma. Typically, a quantity of platinum and a quantity of alumina are loaded into a plasma gun. When the nano-active material bonds with the nano-support, an interface between the nano-active material and the nano-support forms. The interface is a platinum alumina metallic compound, which dramatically changes an ability for the nano-active material to move around on the surface of the nano-support, providing a better bond than that of a wet catalyst. Alternatively, a quantity of carbon is also loaded into the plasma gun.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: SDCMATERIALS, INC.
    Inventors: Qinghua Yin, Xiwang Qi, Eliseo Ruiz
  • Publication number: 20110144382
    Abstract: A catalyst comprising a plurality of support nanoparticles and a plurality of catalytic nanoparticles. At least one catalytic nanoparticle is bonded to each support nanoparticle. The catalytic particles have a size and a concentration, wherein a first configuration of the size and the concentration of the catalytic nanoparticles enables a first catalysis result and a second configuration of the size and the concentration of the catalytic nanoparticles enables a second catalysis result, with the first and second configurations having a different size or concentration, and the first and second catalysis results being different. In some embodiments, the first catalysis result is a selective reduction of a first selected functional group without reducing one or more other functional groups, and the second catalysis result is a selective reduction of a second selected functional group without reducing one or more other functional groups.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 16, 2011
    Applicant: SDCMATERIALS, INC.
    Inventors: Qinghua Yin, Xiwang Qi
  • Publication number: 20110143926
    Abstract: A method of forming a catalyst, comprising: providing a plurality of support particles and a plurality of mobility-inhibiting particles, wherein each support particle in the plurality of support particles is bonded with its own catalytic particle; and bonding the plurality of mobility-inhibiting particles to the plurality of support particles, wherein each support particle is separated from every other support particle in the plurality of support particles by at least one of the mobility-inhibiting particles, and wherein the mobility-inhibiting particles are configured to prevent the catalytic particles from moving from one support particle to another support particle.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 16, 2011
    Applicant: SDCMATERIALS, INC.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Publication number: 20100289154
    Abstract: A semiconductor package comprises a semiconductor substrate that may comprise a core. The core may comprise one or more materials selected from a group comprising ceramics and glass dielectrics. The package further comprises a set of one or more inner conductive elements that is provided on the core, a set of one or more outer conductive elements that is provided on an outer side of the substrate, and a semiconductor die to couple to the substrate via one or more of the outer conductive elements. Example materials for the core may comprise one or more from alumina, zirconia, carbides, nitrides, fused silica, quartz, sapphire, and Pyrex. A laser may be used to drill one or more plated through holes to couple an inner conductive element to an outer conductive element. A dielectric layer may be formed in the substrate to insulate an outer conductive element from the core or an inner conductive element.
    Type: Application
    Filed: March 23, 2010
    Publication date: November 18, 2010
    Inventors: Yonggang Li, Amruthavalll P. Alur, Devarajan Balaraman, Xiwang Qi, Charan K. Gurumurthy
  • Publication number: 20100239940
    Abstract: A method of manufacturing a fuel cell stack is provided. The method provides forming an inspectable preassembly of multiple fuel cell assemblies that may be termed a pseudostack. Each fuel cell in the pseudostack has permanent electrical interconnections and sealing connections on only one of the two electrodes, namely an anode layer or a cathode layer. For example, an anode interconnect may be firmly attached to the anode layer by means of a bonding agent and a sealing agent used to seal passages on the anode layer of the fuel cell. Alternatively, seals and permanent electrical connections may be made on the cathode layer of the fuel cell, and not on the anode layer.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard Scott Bourgeois, Richard Louis Hart, Sauri Gudlavalleti, Shu Ching Quek, Andrew Philip Shapiro, Rong Fan, Dacong Weng, Xiwang Qi
  • Patent number: 7749900
    Abstract: A semiconductor package comprises a semiconductor substrate that may comprise a core. The core may comprise one or more materials selected from a group comprising ceramics and glass dielectrics. The package further comprises a set of one or more inner conductive elements that is provided on the core, a set of one or more outer conductive elements that is provided on an outer side of the substrate, and a semiconductor die to couple to the substrate via one or more of the outer conductive elements. Example materials for the core may comprise one or more from alumina, zirconia, carbides, nitrides, fused silica, quartz, sapphire, and Pyrex. A laser may be used to drill one or more plated through holes to couple an inner conductive element to an outer conductive element. A dielectric layer may be formed in the substrate to insulate an outer conductive element from the core or an inner conductive element.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 6, 2010
    Assignee: Intel Corporation
    Inventors: Yonggang Li, Amruthavalli P. Alur, Devarajan Balaraman, Xiwang Qi, Charan K. Gurumurthy
  • Publication number: 20100078805
    Abstract: A semiconductor package comprises a semiconductor substrate that may comprise a core. The core may comprise one or more materials selected from a group comprising ceramics and glass dielectrics. The package further comprises a set of one or more inner conductive elements that is provided on the core, a set of one or more outer conductive elements that is provided on an outer side of the substrate, and a semiconductor die to couple to the substrate via one or more of the outer conductive elements. Example materials for the core may comprise one or more from alumina, zirconia, carbides, nitrides, fused silica, quartz, sapphire, and Pyrex. A laser may be used to drill one or more plated through holes to couple an inner conductive element to an outer conductive element. A dielectric layer may be formed in the substrate to insulate an outer conductive element from the core or an inner conductive element.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Yonggang Li, Amruthavalli P. Alur, Devarajan Balaraman, Xiwang Qi, Charan K. Gurumurthy
  • Publication number: 20090250824
    Abstract: A semiconductor package comprises a substrate that utilizes one or more pins to form external interconnects. The pins are bonded to bonding pads on the substrate by solder. The pins may each has a pin head that may have a bonding surface, wherein the bonding surface may comprises a center portion and a side portion that is tapered away relative to the center portion. In some embodiments, the bonding surface may comprise a round shape. In some embodiments, a gas escape path may be provided by the shape of the bonding surface to increase pin pull strength and/or solder strength. The package may further comprise a surface finish that may comprise a palladium layer with a reduced thickness to reduce the amount of palladium based IMC precipitation into the solder.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Inventors: Xiwang Qi, Charan K. Gurumurthy, Tamil Selvy Selvamuniandy, Isao Yamada
  • Patent number: 7246570
    Abstract: A method of determining temperature and temperature distribution over the surface of an object includes (a) applying a temperature sensitive film composed of material displaying change in color as a function of temperature on a surface of an object; and (b) comparing the color changes on the film with predetermined color and temperature data developed for the film. A related temperature indication device includes a temperature indication device for measuring the temperature and temperature distribution over a surface of an object comprising: a thin film composed of a plurality of fibers embedded in an inert binder wherein the plurality of metal or metal alloy fibers have a property whereby the fibers exhibit color change as a function of temperature, when the thin film is engaged with the surface of the object.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: July 24, 2007
    Assignee: General Electric Company
    Inventors: Dacong Weng, Rong Fan, Xiwang Qi, Shekhar Shripad Kamat
  • Publication number: 20060286428
    Abstract: A fuel cell composite sealing structure for a fuel cell stack/module that includes a cell that comprises having a cathode and an anode sandwiching a solid electrolyte, a cathode-side interconnect adjacent the cathode (or electrolyte) and an anode-side interconnect adjacent the anode (or electrolyte), the composite sealing structure comprising a pair of composite sealant structures extending about the respective peripheries of the cathode-side and anode-side interconnects, each composite sealant structure comprising a sealing portion interposed between marginal edges of the cathode-side interconnect and the cathode (or electrolyte), and the anode-side interconnect and the anode (or electrolyte), respectively, and an adjacent sealant reservoir portion located outside the respective peripheries for supplying additional sealant to the sealing portion.
    Type: Application
    Filed: June 20, 2005
    Publication date: December 21, 2006
    Applicant: General Electric Company
    Inventors: Dacong Weng, Jie Guan, Xiwang Qi
  • Publication number: 20060257703
    Abstract: A method for manufacturing a solid oxide electrochemical device comprising disposing electrolyte between a first electrode and a second electrode, applying a bonding agent between the first electrode and a first interconnect, applying a sealing agent between the first electrode and the first interconnect, disposing a second interconnect adjacent to the second electrode, heating the first interconnect, the first electrode, the electrolyte, the second electrode, the second interconnect, the bonding agent, and the sealing agent to at least one intermediate temperature for at least one intermediate length of time, and then to a curing temperature, for a curing time, effective to bond and seal the first electrode to the first interconnect, wherein the at least one intermediate temperature is less than the curing temperature.
    Type: Application
    Filed: January 30, 2006
    Publication date: November 16, 2006
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Xiwang Qi, Rong Fan, Andrew Shapiro, Dacong Weng, Jie Guan, James Powers, Stanley Simpson
  • Publication number: 20060228613
    Abstract: A fuel cell stack comprises multiple fuel cell assemblies, wherein each fuel cell assembly includes a fuel cell comprising an anode layer and a cathode layer, and an electrolyte interposed between the anode layer and the cathode layer. The fuel cell assembly further comprises an anode interconnect and a cathode interconnect, wherein the anode interconnect may be firmly attached to the anode layer by means of a bonding agent and a sealing agent used to seal passages on the anode layer of each fuel cell.
    Type: Application
    Filed: April 7, 2005
    Publication date: October 12, 2006
    Inventors: Richard Bourgeois, Richard Hart, Sauri Gudlavalleti, Shu Quek, Andrew Shapiro, Rong Fan, Dacong Weng, Xiwang Qi
  • Publication number: 20060188649
    Abstract: To form the solid oxide fuel cell, porous, compliant and conducting anode and cathode buffers are disposed between the cell and anode and cathode flow fields respectively. Marginal gaps between the anode and cathode flow fields and margins of the cell are formed in excess of the thickness of glass based seal tape disposed between the flow field margins and the cell margins. Upon compressing the flow fields and thus the buffer layers, the seal tapes are engaged by the flow fields and cell margins. Heat is applied to reach seal working temperatures to melt the glass-based seal which, upon cooling, solidifies or hardens to form hermetic seals along the fuel cell margins.
    Type: Application
    Filed: February 22, 2005
    Publication date: August 24, 2006
    Applicant: General Electric Company
    Inventors: Xiwang Qi, Jie Guan, Dacong Weng
  • Publication number: 20060169953
    Abstract: A method of determining temperature and temperature distribution over the surface of an object includes (a) applying a temperature sensitive film composed of material displaying change in color as a function of temperature on a surface of an object; and (b) comparing the color changes on the film with predetermined color and temperature data developed for the film.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 3, 2006
    Applicant: General Electric Company
    Inventors: Dacong Weng, Rong Fan, Xiwang Qi, Shekhar Kamat
  • Patent number: 6994884
    Abstract: A method of fabricating a support electrode for a solid oxide fuel cell includes (a) providing a solid support electrode having an upper surface, the solid electrode comprising an electronically non-conductive material and an electronically conductive material; (b) applying a mask over the upper surface to create a desired unmasked pattern on the top surface; (c) removing the desired amount of material(s) from the unmasked pattern to a predetermined depth of the support electrode; and (d) removing the mask.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: February 7, 2006
    Assignee: General Electric Company
    Inventors: Jie Guan, Dacong Weng, Vishal Agarwal, Xiwang Qi