Patents by Inventor Xuetong Fan

Xuetong Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018095
    Abstract: Composition and methods for killing microorganisms using antimicrobial epoxy polymers and epoxy polymer curing agents are described. Compositions containing at least one compound of formula I where R1 is a phenolic group (e.g., simple phenol, creosote, thymol, or carvacrol), and where R2 is a polyamine (e.g., ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), hexamethylenediamine (HDA)); and optionally a carrier; the compositions may additionally contain at least one epoxy resin. Methods for killing microorganisms involving contacting the microorganisms with an effective microorganism killing amount of the above composition.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: HELEN N. LEW, KUN HUANG, RICHARD D. ASHBY, XUETONG FAN
  • Patent number: 11840499
    Abstract: A biobased fatty acid arginate may be synthesized according to the disclosed process by combining arginine and a fatty acid. The fatty acid arginate may have certain beneficial properties, such as surfactant properties or acting as an antimicrobial agent.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: December 12, 2023
    Assignee: The United States of America, as represented by The Secretary of Agriculture
    Inventors: Helen N Lew, Xuetong Fan, Kun Huang, Jianwei Zhang
  • Publication number: 20220274918
    Abstract: A biobased fatty acid arginate may be synthesized according to the disclosed process by combining arginine and a fatty acid. The fatty acid arginate may have certain beneficial properties, such as surfactant properties or acting as an antimicrobial agent.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: HELEN N. LEW, XUETONG FAN, KUN HUANG, JIANWEI ZHANG
  • Publication number: 20210094905
    Abstract: Compositions containing at least one compound of formula I where R1 is a phenolic compound (e.g., simple phenol, creosote, thymol, or carvacrol), and where R2 is a polyamine (e.g., ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), hexamethylenediamine (HDA)); and optionally a carrier; the compositions may additionally contain at least one epoxy resin. Methods for killing microorganisms involving contacting the microorganisms with an effective microorganism killing amount of the above composition. Compositions containing at least one compound produced by a method involving reacting phenolic-branched chain fatty acid methyl ester with at least one polyamine.
    Type: Application
    Filed: August 21, 2020
    Publication date: April 1, 2021
    Inventors: Kun Huang, Richard D. Ashby, Xuetong Fan, Helen N. Lew, Robert A. Moreau
  • Patent number: 10144694
    Abstract: Disclosed are methods for preparing phenolic branched chain fatty acids or alkyl esters thereof, involving subjecting in a pressurized container (a) at least one phenolic compound, (b) unsaturated fatty acids having 6 to 25 carbon atoms, alkyl esters thereof, or mixtures thereof, and (c) H-ferrierite zeolite catalyst in the presence of distilled water or alcohol and a nitrogen atmosphere at a temperature of about 100° C. to about 400° C. and a pressure of about 10 to about 1000 psi, and isolating saturated phenolic branched chain fatty acids or alkyl esters thereof or mixtures thereof. Also disclosed are methods for killing microorganisms on or in an object, involving contacting said object with an effective microorganisms killing amount of a composition comprising phenolic branched chain fatty acids or alkyl esters thereof, and optionally a carrier; the phenolic branched chain fatty acids or alkyl esters thereof may be produced by the methods described herein.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: December 4, 2018
    Assignee: The United States of America, as Represented by the Secretary of Agriculture
    Inventors: Helen N. Lew, Karen Wagner, Xuetong Fan, Alberto Nunez, Robert A. Moreau, Michael J. Haas, Zongcheng Yan
  • Publication number: 20180282254
    Abstract: Disclosed are methods for preparing phenolic branched chain fatty acids or alkyl esters thereof, involving subjecting in a pressurized container (a) at least one phenolic compound, (b) unsaturated fatty acids having 6 to 25 carbon atoms, alkyl esters thereof, or mixtures thereof, and (c) H-ferrierite zeolite catalyst in the presence of distilled water or alcohol and a nitrogen atmosphere at a temperature of about 100° C. to about 400° C. and a pressure of about 10 to about 1000 psi, and isolating saturated phenolic branched chain fatty acids or alkyl esters thereof or mixtures thereof. Also disclosed are methods for killing microorganisms on or in an object, involving contacting said object with an effective microorganisms killing amount of a composition comprising phenolic branched chain fatty acids or alkyl esters thereof, and optionally a carrier; the phenolic branched chain fatty acids or alkyl esters thereof may be produced by the methods described herein.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Inventors: Helen N. Lew, Karen Wagner, Xuetong Fan, Alberto Nunez, Robert A. Moreau, Michael J. Haas, Zongcheng Yan
  • Patent number: 10071946
    Abstract: Disclosed are methods for preparing phenolic branched chain fatty acids or alkyl esters thereof, involving subjecting in a pressurized container (a) at least one phenolic compound, (b) unsaturated fatty acids having 6 to 25 carbon atoms, alkyl esters thereof, or mixtures thereof, and (c) H-ferrierite zeolite catalyst in the presence of distilled water or alcohol and a nitrogen atmosphere at a temperature of about 100° C. to about 400° C. and a pressure of about 10 to about 1000 psi, and isolating saturated phenolic branched chain fatty acids or alkyl esters thereof or mixtures thereof. Also disclosed are methods for killing microorganisms on or in an object, involving contacting said object with an effective microorganisms killing amount of a composition comprising phenolic branched chain fatty acids or alkyl esters thereof, and optionally a carrier; the phenolic branched chain fatty acids or alkyl esters thereof may be produced by the methods described herein.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: September 11, 2018
    Assignee: The United States of America, as Represented by the Secretary of Agriculture
    Inventors: Helen N. Lew, Karen Wagner, Xuetong Fan, Alberto Nunez, Robert A. Moreau, Michael J. Haas, Zongcheng Yan
  • Publication number: 20170253552
    Abstract: Disclosed are methods for preparing phenolic branched chain fatty acids or alkyl esters thereof, involving subjecting in a pressurized container (a) at least one phenolic compound, (b) unsaturated fatty acids having 6 to 25 carbon atoms, alkyl esters thereof, or mixtures thereof, and (c) H-ferrierite zeolite catalyst in the presence of distilled water or alcohol and a nitrogen atmosphere at a temperature of about 100° C. to about 400° C. and a pressure of about 10 to about 1000 psi, and isolating saturated phenolic branched chain fatty acids or alkyl esters thereof or mixtures thereof. Also disclosed are methods for killing microorganisms on or in an object, involving contacting said object with an effective microorganisms killing amount of a composition comprising phenolic branched chain fatty acids or alkyl esters thereof, and optionally a carrier; the phenolic branched chain fatty acids or alkyl esters thereof may be produced by the methods described herein.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: HELEN N. Lew, KAREN WAGNER, XUETONG FAN, ALBERTO NUNEZ, ROBERT A. MOREAU, MICHAEL J. HAAS, ZONGCHENG YAN
  • Patent number: 6820600
    Abstract: A method for controlling an internal combustion engine (10) is provided. The engine (10) includes an exhaust gas recirculation (EGR) system (18, 20). The method includes determining an air mass flow rate through the intake manifold at a location upstream of the exhaust gas introduction, and determining an engine volumetric efficiency based on an engine speed and an intake manifold air density. An EGR flow rate is determined based on the volumetric efficiency, the intake manifold air density, an engine displacement volume, the engine speed, and the intake manifold air mass flow rate. The engine (10) is controlled based on the EGR flow rate. Preferred techniques for determining engine volumetric efficiency and EGR flow rate are also provided.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 23, 2004
    Assignee: Detroit Deisel Corporation
    Inventors: Kevin Dean Sisken, Xuetong Fan