Patents by Inventor Yang Wei

Yang Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10429425
    Abstract: The disclosure relates to a method for detecting surface electric field distribution of nanostructures. The method includes the following steps of: providing a sample located on an insulated surface of a substrate; spraying first charged nanoparticles to the insulated surface; and blowing vapor to the insulated surface to observe a distribution of the first charged nanoparticles via an optical microscope.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: October 1, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10424638
    Abstract: A semiconductor device includes a gate electrode, an insulating layer, a first carbon nanotube, a second carbon nanotube, a P-type semiconductor layer, an N-type semiconductor layer, a conductive film, a first electrode, a second electrode and a third electrode. The insulating layer is located on a surface of the gate electrode. The first carbon nanotube and the second carbon nanotube are located on a surface of the insulating layer. The P-type semiconductor layer and the N-type semiconductor layer are located on the surface of the insulating layer and apart from each other. The conductive film is located on surfaces of the P-type semiconductor layer and the N-type semiconductor layer. The first electrode is electrically connected with the first carbon nanotube. The second electrode is electrically connected with the second carbon nanotube. The third electrode is electrically connected with the conductive film.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 24, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10408871
    Abstract: The disclosure relates to a method for calculating surface electric field distribution of nanostructures. The method includes the following steps of: providing a nanostructure sample located on an insulated layer of a substrate; spraying first charged nanoparticles to the insulated surface; blowing vapor to the insulated surface and imaging the first charged nanoparticles via an optical microscope, recording the width w between the first charged nanoparticles and the nanostructure sample, and obtaining the voltage U of the nanostructure sample by an equation.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: September 10, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Xiang Jin, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10398457
    Abstract: A surgical instrument for removing a gallbladder is provided. The surgical instrument includes a handle assembly, an elongated body portion extending distally from the handle assembly, and a capture portion operably mounted on a distal end of the elongated body portion. The capture portion defines a tissue receiving opening when in an open configuration and is configured for receipt through an incision when in the capture portion is in a closed configuration. The capture portion includes at least one sharpened member for cutting tissue received within the tissue receiving opening as the capture portion moves from the open configuration to the closed configuration. Also provided is a method of removing a gallbladder using a surgical instrument.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: September 3, 2019
    Assignees: Covidien LP, The Regents of the University of Michigan
    Inventors: Yuhao He, Scott LaTulip, Zongchang Liu, Yang Wei, Taiming Chu
  • Patent number: 10391574
    Abstract: A welding process involves a fixture for holding a workpiece and a welder, or welding electrode. The fixture imposes ultrasonic vibration on the workpiece. The welder vibrates during vibration, and is operable at a first voltage for welding and a second voltage for peening. The peening may occur while the weld metal is crystallizing. The welding process may be a process of welding two parts together, or of filling a groove or other feature, or of applying or restoring a surface, or of applying a hard facing or ceramic to a parent metal or object. The weld metal may be the same, or substantially the same, as the parent metal, or it may be different. The different material may be a ceramic material.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 27, 2019
    Assignee: Huys Industries Limited
    Inventors: Nigel Scotchmer, Dominic Cheuk Hung Leung, Dong Shijie, Luo Ping, Chang Ying, Wang Huihu, Xie Zhixiong, Zheng Zhong, Yang Wei, Yang Lianzhuo, Liu Qi, Wang Yanqing
  • Patent number: 10388880
    Abstract: A method for forming an organic light emitting diode is provided. A substrate and an evaporating source are provided. A first electrode is formed on a surface of the substrate. The evaporating source is spaced from the first electrode. The carbon nanotube film structure is heated to gasify an organic light emitting material and form an organic light emitting layer on a surface of the first electrode. A second electrode is formed on a surface of the organic light emitting layer.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: August 20, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Hao-Ming Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10386316
    Abstract: A device for in-situ measuring electrical properties of a carbon nanotube array comprises a chamber, a substrate, a first electrode, a connecting wire, a second electrode, a support structure, and a measuring meter. The substrate, the first electrode, the connecting wire, the second electrode, and the support structure are located inside of the chamber. The measuring meter is located outside of the chamber, and the measuring meter is electrically connected to the first electrode and the second electrode. The first electrode defines a cavity, and the substrate is suspended in the cavity by interaction of the support structure, the second electrode, and the connecting wire.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: August 20, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Xiang Jin, Peng Liu, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10388896
    Abstract: A method for forming an organic thin film transistor is provided. An organic semiconductor layer, a source electrode, a drain electrode, a gate electrode, and an insulating layer are formed on an insulating substrate. A method for forming the organic semiconductor layer is provided. An evaporating source is provided, and the evaporating source and the insulating substrate are spaced from each other. The carbon nanotube film structure is heated to gasify the organic semiconductor material to form the organic semiconductor layer on a depositing surface.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: August 20, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20190245484
    Abstract: A photocurrent scanning system comprises a laser generating device, a focusing device, a displacement adjustment device, a bias supply device, and a measuring device. The laser generating device is used to emit a laser. The focusing device is used to focus the laser to a surface of a sample. The displacement adjustment device is used to place the sample and adjust a position of the sample, to make the laser focused onto different parts of the surface of the sample. The bias supply device is used to supply a voltage to the sample. The measuring device is used to measure a photocurrent signal flowing through the sample.
    Type: Application
    Filed: January 16, 2019
    Publication date: August 8, 2019
    Inventors: KE ZHANG, YANG WEI, SHOU-SHAN FAN
  • Patent number: 10367055
    Abstract: The disclosure relates to an epitaxial structure. The epitaxial structure includes a substrate, an epitaxial layer, and a nanotube film. The substrate has an epitaxial growth surface. The epitaxial layer is located on the epitaxial growth surface of the substrate. The nanotube film is located between the substrate and the epitaxial layer. The nanotube film includes a number of nanotubes orderly arranged and combined with each other by ionic bonds.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: July 30, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Publication number: 20190212203
    Abstract: A cavity black body radiation source is provided. The cavity black body radiation source comprises a blackbody radiation cavity, a black lacquer, and a carbon nanotube layer. The blackbody radiation cavity comprises an inner surface. The black lacquer is located on the inner surface. The carbon nanotube layer is located on a surface of the black lacquer away from the blackbody radiation cavity. The carbon nanotube layer comprises a plurality of carbon nanotubes and a plurality of microporous. A method of making the cavity blackbody radiation source is also provided.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 11, 2019
    Inventors: YANG WEI, Guang Wang, SHOU-SHAN FAN
  • Publication number: 20190212202
    Abstract: A cavity blackbody radiation source is provide. A cavity blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube layer. The blackbody radiation cavity comprises an inner surface. The carbon nanotube layer is located on the inner surface. The carbon nanotube carbon nanotube layer comprises a plurality of carbon nanotubes and a plurality of microporous. A method of making the cavity blackbody radiation source is also provide.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 11, 2019
    Inventors: YANG WEI, Guang Wang, SHOU-SHAN FAN
  • Publication number: 20190212199
    Abstract: A cavity blackbody radiation source is provided. The cavity blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube composite material. The blackbody radiation cavity comprises an inner surface. The carbon nanotube composite material is located on the inner surface. The carbon nanotube composite material comprises a black lacquer and a plurality of carbon nanotubes, and the plurality of carbon nanotubes is dispersed in the black lacquer.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 11, 2019
    Inventors: YANG WEI, Guang Wang, SHOU-SHAN FAN
  • Publication number: 20190212201
    Abstract: A plane source blackbody is provided. The plane source blackbody comprises a panel and a carbon nanotube composite material. The panel comprising a first surface and a second surface, and the first surface is opposite to the second surface. The carbon nanotube composite material is located on the first surface. The carbon nanotube composite material comprises a black lacquer and a plurality of carbon nanotubes, and the plurality of carbon nanotubes is dispersed in the black lacquer.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 11, 2019
    Inventors: YANG WEI, GUANG WANG, SHOU-SHAN FAN
  • Publication number: 20190212204
    Abstract: A plane source blackbody is provided. The plane source blackbody comprises a panel, a black lacquer, and a carbon nanotube layer. The panel comprises a first surface and a second surface, and the first surface is opposite to the second surface. The black lacquer is located on the first surface. The carbon nanotube layer is located on a surface of the black lacquer away from the first surface. A method of making the plane source blackbody is also provided.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 11, 2019
    Inventors: YANG WEI, Guang Wang, SHOU-SHAN FAN
  • Publication number: 20190212200
    Abstract: A cavity blackbody radiation source is provide. The cavity blackbody radiation source comprises a blackbody radiation cavity and a carbon nanotube composite material. The blackbody radiation cavity comprises an inner surface. The carbon nanotube composite material is located on the inner surface. The carbon nanotube composite material comprises a black lacquer and a plurality of carbon nanotubes, and the plurality of carbon nanotubes is in an upright state in the black lacquer.
    Type: Application
    Filed: November 21, 2018
    Publication date: July 11, 2019
    Inventors: YANG WEI, Guang Wang, SHOU-SHAN FAN
  • Patent number: 10347856
    Abstract: The present disclosure relates to a light detector. The light detector includes a first electrode, a second electrode, a current detector, a power source and a nano-heterostructure. The nano-heterostructure is electrically coupled with the first electrode and the second electrode. The nano-heterostructure includes a first carbon nanotube, a second carbon nanotube and a semiconductor layer. The semiconductor layer includes a first surface and a second surface opposite to the first surface. The first carbon nanotube is located on the first surface, the second carbon nanotube is located on the second surface.
    Type: Grant
    Filed: June 3, 2017
    Date of Patent: July 9, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jin Zhang, Yang Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10337098
    Abstract: A method of growing carbon nanotubes is related. A reactor is provided. The reactor includes a reactor chamber and a carbon nanotube catalyst composite layer suspended in the reactor chamber. The carbon nanotube catalyst composite layer includes a carbon nanotube layer and a number of catalyst particles dispersed in the carbon nanotube layer. A mixture of carbon source gas and carrier gas is introduced into the reactor chamber to penetrate the carbon nanotube catalyst composite layer. The carbon nanotube catalyst composite layer is heated.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: July 2, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wu, Peng Liu, Yang Wei, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20190173033
    Abstract: A method of making a photodetector includes: providing a substrate and forming an interdigital electrode layer on a surface of the substrate; and forming a photoactive layer on a surface of the interdigital electrode layer.
    Type: Application
    Filed: January 21, 2019
    Publication date: June 6, 2019
    Inventors: HAO-MING WEI, YANG WEI, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 10259703
    Abstract: The disclosure relates to a method for making an actuator based on carbon nanotubes. The method includes: providing a carbon nanotube layer; depositing a vanadium oxide (VOx) layer on the carbon nanotube layer; and annealing the VOx layer in an oxygen atmosphere to form a vanadium dioxide layer (VO2) layer. Because the drastic reversible phase transition of VO2, the actuator has giant deformation amplitude and fast response.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 16, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: He Ma, Yang Wei, Kai Liu, Kai-Li Jiang, Shou-Shan Fan