Patents by Inventor Yang Xiao

Yang Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10713194
    Abstract: Embodiments of the present disclosure relate to a computer-implemented method. According to the method, a series of valid control codes for a calibration stage in a channel corresponding to a plurality of calibration cycles are acquired from the calibration logic. The acquired valid control codes are analyzed to obtain changing characteristics for the calibration stage in the channel. The calibration logic for the calibration stage in the channel is adjusted in one or more subsequent calibration cycles based on the changing characteristics.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Xu Guang Sun, Yang Xiao, Xiao Di Xing
  • Publication number: 20200180269
    Abstract: A method for making a graphene adhesive film includes the following steps: growing a graphene on a growth substrate, wherein the material of the growth substrate is copper; depositing an adhesive layer on a surface of the graphene away from the growth substrate, to form an adhesive/graphene/growth substrate composite structure; and removing the growth substrate from the adhesive/graphene/growth substrate composite structure with an etching solution, wherein the etching solution is a mixture of hydrogen peroxide, hydrochloric acid, and deionized water.
    Type: Application
    Filed: March 12, 2019
    Publication date: June 11, 2020
    Inventors: TIAN-FU ZHANG, ZHONG-ZHENG HUANG, XIAO-YANG XIAO, YING-CHENG WANG, QUN-QING LI, SHOU-SHAN FAN
  • Patent number: 10680119
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode; the second end is located on the surface of the insulating substrate. The semiconducting structure is nano-scale semiconductor structure. The second electrode is located on the second end.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 9, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Publication number: 20200175299
    Abstract: A example receiver includes analog circuitry configured to equalize and amplify an input signal and provide an analog signal as output; clock data recovery (CDR) circuitry configured to recover data clocks and edge clocks from the analog signal; a plurality of eye height optimization circuits, each of the plurality of eye height optimization circuits configured to, based on a respective data pattern of a plurality of data patterns, sample the analog signal based on the data clocks and the edge clocks, feed back first information to the analog circuitry for adjusting the eye amplitude, and feed back second information to the CDR circuitry for adjusting the data clocks; and an eye width optimization circuit configured to receive data and edge samples from the plurality of eye height optimization circuits, feed back third information to the CDR circuitry to adjust the edge clocks, and feed back fourth information to the analog circuitry to adjust the equalization.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Inventors: Xiao Di XING, Zhen Peng ZUO, Yang XIAO, Xu Guang SUN
  • Patent number: 10627867
    Abstract: The present invention provides a hinge of a mobile terminal with a flexible screen. The outer side of the hinge supports the flexible screen. The hinge comprises a main support body, a first bracket and a second bracket rotatably connected to a rotating shaft of the hinge, a first support body and a second support body respectively slidably connected to the first bracket and the second bracket, and a synchronous control mechanism. An auxiliary support body is separately provided between the first support body and the main support body and between the second support body and the main support body. The auxiliary support body is correspondingly located at a bend portion of the hinge in a closed state. The hinge is further provided with a first guide structure rotating around the rotating shaft of the hinge together with the first bracket and a second guide structure rotating around the rotating shaft of the hinge together with the second bracket.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: April 21, 2020
    Assignee: Hangzhou Amphenol Phoenix Telecom Parts Co., Ltd.
    Inventors: Guanlun Cheng, Yang Xiao, Mengyu Si
  • Patent number: 10585841
    Abstract: Techniques and systems for performing calibration. A method includes: creating a common calibration pool for performing a calibration operation for two or more communication links, wherein the calibration operation is common to the two or more communication links; and performing a calibration on each of the two or more communication links using the common calibration pool by receiving a calibration request associated with the common calibration operation via a link calibration interface, wherein the calibration request is from at least one of the two or more communication links, upon determining the calibration agent is available to handle the calibration request, retrieving a calibration engine from at least one of the plurality of calibration clusters corresponding to the calibration operation, retrieving a calibration engine from at least one of the plurality of calibration clusters corresponding to the calibration operation, and performing the common calibration based on the retrieving.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Xu Guang Sun, Yang Xiao, Xiao Di Xing, Zhen Peng Zuo
  • Publication number: 20200065272
    Abstract: Embodiments of the present disclosure relate to a computer-implemented method. According to the method, a series of valid control codes for a calibration stage in a channel corresponding to a plurality of calibration cycles are acquired from the calibration logic. The acquired valid control codes are analyzed to obtain changing characteristics for the calibration stage in the channel. The calibration logic for the calibration stage in the channel is adjusted in one or more subsequent calibration cycles based on the changing characteristics.
    Type: Application
    Filed: July 17, 2019
    Publication date: February 27, 2020
    Inventors: Xu Guang Sun, Yang Xiao, Xiao Di Xing
  • Publication number: 20200064782
    Abstract: A system is described herein for controlling an inverter comprising an artificial neural network (ANN) and a space vector pulse-width modulation converter. The ANN comprises an input layer, plurality of hidden layers, an output layer, and a processor. The ANN receives a plurality of input signals and produces output signals that control a SVPWM converter. The ANN is trained to minimize a cost function and to implement optimal control based on ADP. Further, the ANN can be configured to handle rated current and PWM saturation constraints in providing volt/VAR control functions. Finally, the ANN uses averaged feedback signals instead of instantaneous feedback signals to improve volt/VAR control performance of parallel inverters. Performance evaluation shows that an ANN controller has a strong ability to maintain volt and VAR control at the grid edge and prevent fighting between inverters thereby allowing an inverter to work effectively in parallel with other ANN-controlled inverters.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 27, 2020
    Inventors: Shuhui Li, Yang Sun, Malek Ramezani, Yang Xiao
  • Publication number: 20200034328
    Abstract: Techniques and systems for performing calibration. A method includes: creating a common calibration pool for performing a calibration operation for two or more communication links, wherein the calibration operation is common to the two or more communication links; and performing a calibration on each of the two or more communication links using the common calibration pool by receiving a calibration request associated with the common calibration operation via a link calibration interface, wherein the calibration request is from at least one of the two or more communication links, upon determining the calibration agent is available to handle the calibration request, retrieving a calibration engine from at least one of the plurality of calibration clusters corresponding to the calibration operation, retrieving a calibration engine from at least one of the plurality of calibration clusters corresponding to the calibration operation, and performing the common calibration based on the retrieving.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Inventors: Xu Guang SUN, Yang XIAO, Xiao Di XING, Zhen Peng ZUO
  • Patent number: 10545128
    Abstract: The present invention discloses a device for measuring adsorption/desorption of contaminants onto surface bed sediments and a method of using the device. The measurement device includes a sediment sample disc, a sample holder, a reaction cylinder, a liquid collection cylinder, and a liquid circulating member from inside to outside, the liquid circulating member consisting of rubber pipes and a peristaltic pump.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: January 28, 2020
    Assignee: Hohai University
    Inventors: Hongwu Tang, Qingxia Li, Yang Xiao, Zhiwei Li, Saiyu Yuan
  • Publication number: 20190374764
    Abstract: The present disclosure is to manipulate the particles in any path in a non-uniform medium. To achieve the objective, the present disclosure provides the system for manipulating the particles based on a time reversal technique including array transducers, a signal reception and transmission control device and a host. The array transducers are communicatively connected to the signal reception and transmission control device. The signal reception and transmission control device is communicatively connected to the host.
    Type: Application
    Filed: April 19, 2017
    Publication date: December 12, 2019
    Applicant: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
    Inventors: FEIYAN CAI, Fei LI, Chen WANG, Weibao QIU, Long MENG, Congzhi WANG, Yang XIAO, Hairong ZHENG
  • Patent number: 10483472
    Abstract: A Schottky diode includes an insulating substrate and at least one Schottky diode unit. The at least one Schottky diode unit is located on a surface of the insulating substrate. The at least one Schottky diode unit includes a first electrode, a semiconductor structure and a second electrode. The semiconductor structure comprising a first end and a second end. The first end is laid on the first electrode, the second end is located on the surface of the insulating substrate. The semiconducting structure includes a carbon nanotube structure. The second electrode is located on the second end.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 19, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Yuan-Hao Jin, Tian-Fu Zhang, Qun-Qing Li
  • Patent number: 10475936
    Abstract: The disclosure relates to a thin film transistor and a method for making the same. The thin film transistor includes a substrate; a gate on the substrate; a dielectric layer on the gate, wherein the dielectric layer includes a first sub-dielectric layer and a second sub-dielectric layer stacked on one another, and the first sub-dielectric layer is a first oxide dielectric layer formed by magnetron sputtering and in direct contact with the gate; a semiconductor layer on the dielectric layer, wherein the semiconductor layer includes nano-scaled semiconductor materials; and a source and a drain, wherein the source and the drain are on the dielectric layer, spaced apart from each other, and electrically connected to the semiconductor layer. The thin film transistor almost has no current hysteresis.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: November 12, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Jia Huo, Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Tian-Fu Zhang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20190332369
    Abstract: A method and apparatus for data driven and cluster specific version/update control. The apparatus includes an automated multi-clusters management apparatus that interfaces with a plurality of remote clusters to provide data driven version/update control on a cluster by cluster basis. Generally, operation includes collection/identification of cluster specific data pertaining to software, hardware, and cluster requirements. The cluster specific data is later compared/analyzed against multi-cluster data pertaining to software releases, hardware characteristics, and known bugs/issues for each. The results of the comparison/analysis can then be ranked according to various metrics to different possible solutions and to differentiate the less desirable results from the more desirable results. Thus, the automated multi-cluster management apparatus provides for selection of versions/updates that is dependent on the cluster specific data.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Applicant: Nutanix, Inc.
    Inventors: Karan GUPTA, Amit JAIN, Avinash Manjaya SHETTY, Harry Hai YANG, Jie LI, Krishna GANTI, Paul Michael DIGIOIA, Pavan Kumar KONKA, Ranjan PARTHASARATHY, Yang XIAO
  • Patent number: 10450247
    Abstract: A method for producing hydrocarbons and hydrogen from methane. The method includes packing a catalyst comprising platinum, bismuth and a support material into a reactor; introducing a reactant mixture containing methane into the reactor such that the reactant mixture containing methane is in close contact with the reactant mixture; and heating the reactant mixture containing methane to a temperature for a period of time.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: October 22, 2019
    Assignee: Purdue Research Foundation
    Inventors: Arvind Varma, Yang Xiao
  • Patent number: 10437753
    Abstract: Embodiments of the present disclosure relate to a computer-implemented method. According to the method, a series of valid control codes for a calibration stage in a channel corresponding to a plurality of calibration cycles are acquired from the calibration logic. The acquired valid control codes are analyzed to obtain changing characteristics for the calibration stage in the channel. The calibration logic for the calibration stage in the channel is adjusted in one or more subsequent calibration cycles based on the changing characteristics.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: October 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Xu Guang Sun, Yang Xiao, Xiao Di Xing
  • Patent number: 10429274
    Abstract: A vertical high-speed testing device for a spiral seal of a cone bit bearing is provided. The device includes an upper fixed plate, a liquid cylinder, a cone, a spiral sleeve, a shaft and a lower fixed plate. The spiral sleeve is in threaded connection to the cone. Both the cone and the spiral sleeve are sheathed on the shaft. Sealing threads are provided on an inner surface of the spiral sleeve, and there is a clearance between the sealing threads and the shaft. By the testing device, a spiral seal structure for a cone bit bearing is simulated, and the cone drives the spiral sleeve to rotate; and the sand draining performance of the spiral seal is tested by measuring the time required to drain sand-containing medium.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 1, 2019
    Inventors: Yi Zhou, Yueming Zheng, Yang Xiao, Xia Wang, Tong Xu, Yuxing Huang, Yi Tang, Bin Tan
  • Patent number: 10431662
    Abstract: The disclosure relates to a thin film transistor and a method for making the same. The thin film transistor includes a substrate; a semiconductor layer on the substrate, wherein the semiconductor layer includes nano-scaled semiconductor materials; a source and a drain, wherein the source and the drain are on the substrate, spaced apart from each other, and electrically connected to the semiconductor layer; a dielectric layer on the semiconductor layer, wherein the dielectric layer includes a first sub-dielectric layer and a second sub-dielectric layer stacked on one another, and the first sub-dielectric layer is a first oxide dielectric layer grown by magnetron sputtering; and a gate in direct contact with the first sub-dielectric layer. The thin film transistor almost has no current hysteresis.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: October 1, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Jia Huo, Yu-Dan Zhao, Xiao-Yang Xiao, Ying-Cheng Wang, Tian-Fu Zhang, Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10424479
    Abstract: A method of making nano-scaled channel, the method including: locating a first photoresist layer, a nanowire structure, and a second photoresist layer on a surface of a substrate, and the nanowire structure being sandwiched between the first photoresist layer and the second photoresist layer, wherein the nanowire structure comprises an nanowire; forming an opening in the first photoresist layer and the second photoresist layer to expose a portion of the surface of the substrate to form an exposed surface, wherein a part of the nanowire is exposed and suspended in the opening, and both ends of the nanowire are sandwiched between the first photoresist layer and the second photoresist layer; and depositing a thin film layer on the exposed surface of the substrate using the a nanowire as a mask, wherein the thin film layer defines a nano-scaled channel corresponding to the at least one nanowire.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 24, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Xiao-Yang Xiao, Jin Zhang, Shou-Shan Fan
  • Patent number: 10424480
    Abstract: A method of making a thin film transistor, the method including: providing an insulating layer on a semiconductor substrate, forming a semiconductor layer on the insulating layer; locating a first photoresist layer, a nanowire structure, a second photoresist layer on the semiconductor layer, wherein the nanowire structure comprises a nanowire; forming an opening in the first photoresist layer and the second photoresist layer to form an exposed surface, wherein a part of the nanowire is exposed in the opening; depositing a conductive film layer on the exposed surface of the semiconductor layer, wherein the conductive film layer defines a nano-scaled channel corresponding to the nanowire, and the conductive film layer is divided into two regions by the nano-scaled channel, one region is used as a source electrode, and the other region is used as a drain electrode; forming a gate electrode on the semiconductor substrate.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 24, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Mo Chen, Qun-Qing Li, Li-Hui Zhang, Xiao-Yang Xiao, Jin Zhang, Shou-Shan Fan