Patents by Inventor Yanning Sun

Yanning Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9711648
    Abstract: A semiconductor structure is provided that includes a channel material portion composed of a III-V compound semiconductor located on a mesa portion of a substrate. A dielectric spacer structure is located on each sidewall surface of the channel material portion and each sidewall surface of the mesa portion of the substrate. The dielectric spacer structure has a height that is greater than a height of the channel material portion. An isolation structure is located on each dielectric spacer structure, wherein a sidewall edge of the isolation structure is located between an innermost sidewall surface and an outermost sidewall surface of the dielectric spacer structure.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: July 18, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Effendi Leobandung, Chung-Hsun Lin, Amlan Majumdar, Yanning Sun
  • Patent number: 9704958
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second III-V semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Edward William Kiewra, Amlan Majumdar, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Publication number: 20170179288
    Abstract: A semiconductor device comprises a first layer of a substrate arranged on a second layer of the substrate the second layer of the substrate including a doped III-V semiconductor material barrier layer, a gate stack arranged on a channel region of the first layer of a substrate, a spacer arranged adjacent to the gate stack on the first layer of the substrate, an undoped epitaxially grown III-V semiconductor material region arranged on the second layer of the substrate, and an epitaxially grown source/drain region arranged on the undoped epitaxially grown III-V semiconductor material region, and a portion of the first layer of the substrate.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Publication number: 20170179232
    Abstract: A method for forming a semiconductor device comprising forming a sacrificial gate stack on a channel region of first layer of a substrate, forming a spacer adjacent to the sacrificial gate stack, forming a raised source/drain region on the first layer of the substrate adjacent to the spacer, forming a dielectric layer over the raised source/drain region, removing the sacrificial gate stack to expose the channel region of the first layer of the substrate, and implanting dopants in a second layer of the substrate to form an implant region in the second layer below the channel region of the first layer of the substrate, where the first layer of the substrate is arranged on the second layer of the substrate.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Amlan Majumdar, Yanning Sun
  • Publication number: 20170179237
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 22, 2017
    Inventors: CHENG-WEI CHENG, EDWARD WILLIAM KIEWRA, AMLAN MAJUMDAR, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Publication number: 20170179238
    Abstract: An electrical device comprising a base semiconductor layer of a silicon including material; a dielectric layer present on the base semiconductor layer; a first III-V semiconductor material area present in a trench in the dielectric layer, wherein a via of the III-V semiconductor material extends from the trench through the dielectric layer into contact with the base semiconductor layer; a second semiconductor material area present in the trench in the dielectric layer wherein the second III-V semiconductor material area does not have a via extending through the dielectric layer into contact with the base semiconductor layer; and a semiconductor device present on the second III-V semiconductor material area, wherein the first III-V semiconductor material area and the second III-V semiconductor material area are separated by a low aspect ratio trench extending to the dielectric layer.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: CHENG-WEI CHENG, EDWARD WILLIAM KIEWRA, AMLAN MAJUMDAR, DEVENDRA K. SADANA, KUEN-TING SHIU, YANNING SUN
  • Patent number: 9666684
    Abstract: A method including forming a III-V compound semiconductor-containing heterostructure, forming a gate dielectric having a dielectric constant greater than 4.0 positioned within a gate trench, the gate trench formed within the III-V compound semiconductor-containing heterostructure, and forming a gate conductor within the gate trench on top of the gate dielectric, the gate conductor extending above the III-V compound semiconductor heterostructure. The method further including forming a pair of sidewall spacers along opposite sides of a portion of the gate conductor extending above the III-V compound semiconductor-containing heterostructure and forming a pair of source-drain contacts self-aligned to the pair of sidewall spacers.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: May 30, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anirban Basu, Amlan Majumdar, Yanning Sun
  • Publication number: 20170125607
    Abstract: A junction field effect transistor (JFET) comprises an insulating carrier substrate, a base semiconductor substrate formed on the insulating carrier substrate and a gate region formed on the base semiconductor substrate. The gate region forms a junction with the base semiconductor substrate. The JFET further comprises a first source/drain region formed on the base semiconductor substrate and located on a first side of the gate region and a second source/drain region formed on the base semiconductor substrate and located on a second side of the gate region. A gate stack is deposited on the gate region, a first source/drain stack is deposited on the first source/drain region and a second source/drain stack is deposited on the second source/drain region. At least one of the gate stack, first source/drain stack and second source/drain stack overlaps onto another one of the gate stack, first source/drain stack and second source/drain stack.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 4, 2017
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi, Yanning Sun
  • Patent number: 9627266
    Abstract: A method of forming an active device on a semiconductor wafer includes the steps of: forming a plurality of semiconductor fins on at least a portion of a semiconductor substrate; forming a dielectric layer on at least a portion of the semiconductor substrate, the dielectric layer filling gaps between adjacent fins; forming a plurality of gate structures on an upper surface of the dielectric layer; forming a channel region on the dielectric layer and under at least a portion of the gate structures, the channel region comprising a first crystalline semiconductor material; forming source and drain epitaxy regions on an upper surface of the dielectric layer and between adjacent gate structures, the source and rain regions being spaced laterally from one another; and replacing the channel region with a second crystalline semiconductor material after high-temperature processing used in fabricating the active device has been completed.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Sanghoon Lee, Effendi Leobandung, Renee T. Mo, Yanning Sun
  • Patent number: 9627482
    Abstract: A method for fabricating a semiconductor device may include receiving a gated substrate comprising a substrate with a channel layer and a gate structure formed thereon, over-etching the channel layer to expose an extension region below the gate structure, epitaxially growing a halo layer on the exposed extension region using a first in-situ dopant and epitaxially growing a source or drain on the halo layer using a second in-situ dopant, wherein the first in-situ dopant and the second in-situ dopant are of opposite doping polarity. Using an opposite doping polarity may provide an energy band barrier for the semiconductor device and reduce leakage current. A corresponding apparatus is also disclosed herein.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Young-Hee Kim, Effendi Leobandung, Yanning Sun
  • Publication number: 20170092727
    Abstract: A method is presented for forming a diffusion barrier in a field effect transistor with a source. A raised source is formed at least partially on the source with the raised source comprising III-V material. An interfacial layer is formed at least partially on the raised source with the interfacial layer comprising silicon or germanium. A metal layer is formed at least partially on the interfacial layer with the metal layer comprising transition metal. The diffusion barrier is formed at least partially on the raised source with the diffusion barrier layer comprising transition metal from the metal layer bonded to silicon or germanium from the interfacial layer. Similar processing forms a corresponding diffusion barrier on a raised drain.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Kevin K. Chan, Cheng-Wei Cheng, Jack Oon Chu, Yanning Sun, Jeng-Bang Yau
  • Publication number: 20170092763
    Abstract: A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Effendi Leobandung, Amlan Majumdar, Renee T. Mo, Yanning Sun
  • Publication number: 20170092722
    Abstract: A method is presented for forming a diffusion barrier in a field effect transistor with a source. A raised source is formed at least partially on the source with the raised source comprising III-V material. An interfacial layer is formed at least partially on the raised source with the interfacial layer comprising silicon or germanium. A metal layer is formed at least partially on the interfacial layer with the metal layer comprising transition metal. The diffusion barrier is formed at least partially on the raised source with the diffusion barrier layer comprising transition metal from the metal layer bonded to silicon or germanium from the interfacial layer. Similar processing forms a corresponding diffusion barrier on a raised drain.
    Type: Application
    Filed: April 22, 2016
    Publication date: March 30, 2017
    Inventors: Kevin K. Chan, Cheng-Wei Cheng, Jack Oon Chu, Yanning Sun, Jeng-Bang Yau
  • Publication number: 20170092723
    Abstract: A field effect transistor device includes a gate structure formed over a channel region in a semiconductor material. An inner spacer is formed on sidewalls of the gate structure and over an extension region of the semiconductor material. The inner spacer includes charge or dipoles. A source/drain region is formed adjacent to the gate structure. An inversion layer is formed in the extension region induced by the inner spacer to form a conductive link between the channel region and the source/drain region.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 30, 2017
    Inventors: Takashi Ando, Pouya Hashemi, Vijay Narayanan, Yanning Sun
  • Patent number: 9608066
    Abstract: A field effect transistor device includes a gate structure formed over a channel region in a semiconductor material. An inner spacer is formed on sidewalls of the gate structure and over an extension region of the semiconductor material. The inner spacer includes charge or dipoles. A source/drain region is formed adjacent to the gate structure. An inversion layer is formed in the extension region induced by the inner spacer to form a conductive link between the channel region and the source/drain region.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Vijay Narayanan, Yanning Sun
  • Publication number: 20170084497
    Abstract: A method of forming an active device on a semiconductor wafer includes the steps of: forming a plurality of semiconductor fins on at least a portion of a semiconductor substrate; forming a dielectric layer on at least a portion of the semiconductor substrate, the dielectric layer filling gaps between adjacent fins; forming a plurality of gate structures on an upper surface of the dielectric layer; forming a channel region on the dielectric layer and under at least a portion of the gate structures, the channel region comprising a first crystalline semiconductor material; forming source and drain epitaxy regions on an upper surface of the dielectric layer and between adjacent gate structures, the source and rain regions being spaced laterally from one another; and replacing the channel region with a second crystalline semiconductor material after high-temperature processing used in fabricating the active device has been completed.
    Type: Application
    Filed: April 22, 2016
    Publication date: March 23, 2017
    Inventors: Sanghoon Lee, Effendi Leobandung, Renee T. Mo, Yanning Sun
  • Patent number: 9570296
    Abstract: A method of forming a semiconducting material includes depositing a graded buffer on a substrate to form a graded layer of an indium (In) containing III-V material, the In containing III-V material being indium-gallium-arsenic (InGaAs) or indium-aluminum-arsenic (InAlAs) and comprising In in an increasing atomic gradient up to 35 atomic % (at. %) based on total atomic weight of InGa or InAl; and forming a layer of InGaAs on the graded layer, the layer of InGaAs comprising about 25 to about 100 at. % In based on total atomic weight of InGa.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: February 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Devendra K. Sadana, Kuen-Ting Shiu, Yanning Sun
  • Publication number: 20170025504
    Abstract: A method of forming a semiconducting material includes depositing a graded buffer on a substrate to form a graded layer of an indium (In) containing III-V material, the In containing III-V material being indium-gallium-arsenic (InGaAs) or indium-aluminum-arsenic (InAlAs) and comprising In in an increasing atomic gradient up to 35 atomic % (at. %) based on total atomic weight of InGa or InAl; and forming a layer of InGaAs on the graded layer, the layer of InGaAs comprising about 25 to about 100 at. % In based on total atomic weight of InGa.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Cheng-Wei Cheng, Devendra K. Sadana, Keun-Ting Shiu, Yanning Sun
  • Patent number: 9553166
    Abstract: A semiconductor structure containing a high mobility semiconductor channel material, i.e., a III-V semiconductor material, and asymmetrical source/drain regions located on the sidewalls of the high mobility semiconductor channel material is provided. The asymmetrical source/drain regions can aid in improving performance of the resultant device. The source region contains a source-side epitaxial doped semiconductor material, while the drain region contains a drain-side epitaxial doped semiconductor material and an underlying portion of the high mobility semiconductor channel material.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: January 24, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Pranita Kerber, Effendi Leobandung, Amlan Majumdar, Renee T. Mo, Yanning Sun
  • Patent number: 9508550
    Abstract: A method of forming a semiconducting material includes depositing a graded buffer on a substrate to form a graded layer of an indium (In) containing III-V material, the In containing III-V material being indium-gallium-arsenic (InGaAs) or indium-aluminum-arsenic (InAlAs) and comprising In in an increasing atomic gradient up to 35 atomic % (at. %) based on total atomic weight of InGa or InAl; and forming a layer of InGaAs on the graded layer, the layer of InGaAs comprising about 25 to about 100 at. % In based on total atomic weight of InGa.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: November 29, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cheng-Wei Cheng, Devendra K. Sadana, Keun-Ting Shiu, Yanning Sun