Patents by Inventor Yasuhiko Takemura

Yasuhiko Takemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9478185
    Abstract: A method of reducing power consumption of an electro-optical display device which can display a still image with the use of analog signals. A circuit in which low leakage current flows between a source and a drain of a selection transistor when the selection transistor is off; the source of the selection transistor is connected to a gate of a first driving transistor, a gate of a second driving transistor, and one electrode of a display element; and a source of the second driving transistor is connected to the other electrode of the display element is provided in each pixel. A gate and the drain of the selection transistor are connected to a scan line and a signal line, respectively. A drain of the first driving transistor is connected to a first power supply line. A drain of the second driving transistor is connected to a second power supply line.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: October 25, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Patent number: 9472263
    Abstract: An object is to increase the retention characteristics of a memory device formed using a semiconductor with a wide bandgap, such as an oxide semiconductor. A transistor including a back gate (a back gate transistor) is inserted in series at one end of a bit line so that the back gate is constantly at a sufficiently negative potential. The minimum potential of the bit line is set higher than that of a word line. When power is turned off, the bit line is cut off by the back gate transistor, ensuring prevention of outflow of charge accumulated in the bit line. At this time, the potential of a source or a drain (bit line) of a cell transistor is sufficiently higher than that of a gate of the cell transistor (0 V), so that the cell transistor is put in a sufficiently off state; thus, data can be retained.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: October 18, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Patent number: 9472683
    Abstract: An insulating film is provided over one surface of a first semiconductor layer including a first oxide semiconductor including indium as a main component, and a second semiconductor layer including an i-type second oxide semiconductor is provided in contact with the other surface. The energy difference between a vacuum level and a Fermi level in the second oxide semiconductor is larger than that in the first oxide semiconductor. In the first semiconductor layer, a region in the vicinity of the junction surface with the second oxide semiconductor which satisfies the above condition is a region having an extremely low carrier concentration (a quasi-i-type region). By using the region as a channel, the off-state current can be reduced. Further, a drain current of the FET flows through the first oxide semiconductor having a high mobility; accordingly, a large amount of current can be extracted.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: October 18, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Publication number: 20160284711
    Abstract: In a conventional DRAM, when the capacitance of a capacitor is reduced, an error of reading data easily occurs. A plurality of cells are connected to one bit line MBL_. Each cell includes a sub bit line SBL_n_m and 4 to 64 memory cells (a memory cell CL_n_m_1 or the like). Further, each cell includes selection transistors STr1_n_m and STr2_n_m and an amplifier circuit AMP_n_m that is a complementary inverter or the like is connected to the selection transistor STr2_n_m. Since parasitic capacitance of the sub bit line SBL_n_m is sufficiently small, potential change due to electric charge in a capacitor of each memory cell can be amplified by the amplifier circuit AMP_n_m without an error, and can be output to the bit line.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventor: Yasuhiko TAKEMURA
  • Publication number: 20160266696
    Abstract: A semiconductor device having a novel data input and output panel with high definition is provided. A method for driving the semiconductor device having the novel data input and output panel with high definition is provided. The data input and output panel includes, over a substrate, proximity sensors, signal lines electrically connected to the proximity sensors, and pixels electrically connected to the signal lines. The signal lines can supply image signals to the pixels, can supply control signals to the proximity sensors, and can be supplied with sensing signals from the proximity sensors.
    Type: Application
    Filed: May 19, 2016
    Publication date: September 15, 2016
    Inventor: Yasuhiko TAKEMURA
  • Patent number: 9443990
    Abstract: A manufacturing method of a semiconductor device in which the threshold is adjusted is provided. In a semiconductor device including a plurality of transistors arranged in a matrix each including a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit that supplies a signal to the gate electrode (e.g., word line driver) is provided with a selection circuit formed of an OR gate, an XOR gate, or the like, whereby potentials of word lines can be simultaneously set higher than potentials of bit lines.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: September 13, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Yasuhiko Takemura, Tetsuhiro Tanaka, Takayuki Inoue, Toshihiko Takeuchi, Yasumasa Yamane, Shunpei Yamazaki
  • Patent number: 9443844
    Abstract: A memory cell including two transistors and one capacitor, which is known as a gain cell, is improved. One electrode of the capacitor is connected to a bit line, and the other electrode thereof is connected to a drain of a write transistor. A source of the write transistor is connected to a source line. As a result, for example, in the case where a stacked capacitor is used, the one electrode of the capacitor can be part of the bit line. Only one specific write transistor is turned on when a potential of the source line and a potential of the write bit line are set; thus, only one memory cell can be rewritten.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 13, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yasuhiko Takemura
  • Patent number: 9443592
    Abstract: A manufacturing method of a semiconductor device in which the threshold is corrected is provided. In a semiconductor device including a plurality of transistors each includes a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit for supplying a signal to the gate electrode and a circuit for supplying a signal to the source or drain electrode are electrically separated from each other. The process is performed in the state where the potential of the former circuit is set higher than the potential of the latter circuit.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: September 13, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Yasuhiko Takemura, Tetsuhiro Tanaka, Takayuki Inoue, Toshihiko Takeuchi, Yasumasa Yamane, Shunpei Yamazaki
  • Publication number: 20160261271
    Abstract: A novel programmable logic device is provided. Programmable switches each include a first transistor and a second transistor. The first transistor in a first programmable switch controls conduction between a first wiring and a gate of the second transistor in the first programmable switch. The second transistor in the first programmable switch controls conduction between the first wiring and a second wiring. The first transistor in the second programmable switch controls conduction between another first wiring and a gate of the second transistor in the second programmable switch.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 8, 2016
    Inventor: Yasuhiko TAKEMURA
  • Patent number: 9431400
    Abstract: A highly integrated DRAM is provided. A bit line is formed over a first insulator, a second insulator is formed over the bit line, third insulators which are in a stripe shape and the like are formed over the second insulator, and a semiconductor region and a gate insulator are formed to cover one of the third insulators. The bit line is connected to the semiconductor region through first contact plugs. Then, a conductive film is formed and subjected to anisotropic etching to form word lines at side surfaces of the third insulators, and a second contact plug is formed to be connected to a capacitor at a top of the one of the third insulators. By synchronizing the word lines, electric charge is accumulated or released through the capacitor. With such a structure, the area of a memory cell can be 4F2.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: August 30, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Publication number: 20160248425
    Abstract: A method for driving a semiconductor device capable of reducing an area of a multiplexer and reducing its power consumption is provided. In a method for operating a semiconductor device including a memory and a multiplexer, a first transistor is connected to a first capacitor, and a second transistor is connected to a second capacitor. In the multiplexer, in a third transistor, a source is connected to a first input terminal and a drain is connected to an output terminal and, in a fourth transistor, a source is connected to a second input terminal and a drain is connected to the output terminal. Further, a step of holding a first potential in a node to which the first transistor, the first capacitor, and a gate of the third transistor are connected and holding a second potential higher than the first potential in the node is included.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventor: Yasuhiko TAKEMURA
  • Publication number: 20160247809
    Abstract: The memory capacity of a DRAM is enhanced. A semiconductor memory device includes a driver circuit including part of a single crystal semiconductor substrate, a multilayer wiring layer provided over the driver circuit, and a memory cell array layer provided over the multilayer wiring layer. That is, the memory cell array overlaps with the driver circuit. Accordingly, the integration degree of the semiconductor memory device can be increased as compared to the case where a driver circuit and a memory cell array are provided in the same plane of a substrate containing a singe crystal semiconductor material.
    Type: Application
    Filed: May 6, 2016
    Publication date: August 25, 2016
    Inventors: Shunpei YAMAZAKI, Yasuhiko TAKEMURA
  • Patent number: 9425199
    Abstract: A structure with which the zero current of a field effect transistor using a conductor-semiconductor junction can be reduced is provided. A floating electrode (102) including a conductor or a semiconductor and being enclosed by an insulator (104) is formed between a semiconductor layer (101) and a gate (105) so as to cross the semiconductor layer (101) and the floating electrode (102) is charged, whereby carriers are prevented from flowing from a source electrode (103a) or a drain electrode (103b). Accordingly, a sufficiently low carrier concentration can be kept in the semiconductor layer (101) and thus the zero current can be reduced.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 23, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Patent number: 9384816
    Abstract: In a conventional DRAM, when the capacitance of a capacitor is reduced, an error of reading data easily occurs. A plurality of cells are connected to one bit line MBL_m. Each cell includes a sub bit line SBL_n_m and 4 to 64 memory cells (a memory cell CL_n_m_1 or the like). Further, each cell includes selection transistors STr1_n_m and STr2_n_m and an amplifier circuit AMP_n_m that is a complementary inverter or the like is connected to the selection transistor STr2_n_m. Since parasitic capacitance of the sub bit line SBL_n_m is sufficiently small, potential change due to electric charge in a capacitor of each memory cell can be amplified by the amplifier circuit AMP_n_m without an error, and can be output to the bit line.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: July 5, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Publication number: 20160190139
    Abstract: A structure with which the zero current of a field effect transistor using a conductor-semiconductor junction can be reduced is provided. A floating electrode (102) including a conductor or a semiconductor and being enclosed by an insulator (104) is formed between a semiconductor layer (101) and a gate (105) so as to cross the semiconductor layer (101) and the floating electrode (102) is charged, whereby carriers are prevented from flowing from a source electrode (103a) or a drain electrode (103b). Accordingly, a sufficiently low carrier concentration can be kept in the semiconductor layer (101) and thus the zero current can be reduced.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventor: Yasuhiko TAKEMURA
  • Publication number: 20160181433
    Abstract: An insulating film is provided over one surface of a first semiconductor layer including a first oxide semiconductor including indium as a main component, and a second semiconductor layer including an i-type second oxide semiconductor is provided in contact with the other surface. The energy difference between a vacuum level and a Fermi level in the second oxide semiconductor is larger than that in the first oxide semiconductor. In the first semiconductor layer, a region in the vicinity of the junction surface with the second oxide semiconductor which satisfies the above condition is a region having an extremely low carrier concentration (a quasi-i-type region). By using the region as a channel, the off-state current can be reduced. Further, a drain current of the FET flows through the first oxide semiconductor having a high mobility; accordingly, a large amount of current can be extracted.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Inventor: Yasuhiko TAKEMURA
  • Patent number: 9368059
    Abstract: A semiconductor device having a novel data input and output panel with high definition is provided. A method for driving the semiconductor device having the novel data input and output panel with high definition is provided. The data input and output panel includes, over a substrate, proximity sensors, signal lines electrically connected to the proximity sensors, and pixels electrically connected to the signal lines. The signal lines can supply image signals to the pixels, can supply control signals to the proximity sensors, and can be supplied with sensing signals from the proximity sensors.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: June 14, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Publication number: 20160132386
    Abstract: An error of stored data is detected with high accuracy. Data (e.g., a remainder in a CRC) used for detecting an error is stored in a memory in which an error is unlikely to occur. Specifically, the following semiconductor device is used: a memory element including a plurality of transistors, a capacitor, and a data storage portion is provided in a matrix; the data storage portion includes one of a source and a drain of one of the plurality of transistors, a gate of another one of the plurality of transistors, and one electrode of the capacitor; a semiconductor layer including a channel of the transistor, the one of the source and the drain of which is connected to the data storage portion, has a band gap of 2.8 eV or more, or 3.2 eV or more; and the data storage portion stores data for detecting an error.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 12, 2016
    Inventor: Yasuhiko Takemura
  • Patent number: 9337836
    Abstract: A method for driving a semiconductor device capable of reducing an area of a multiplexer and reducing its power consumption is provided. In a method for operating a semiconductor device including a memory and a multiplexer, a first transistor is connected to a first capacitor, and a second transistor is connected to a second capacitor. In the multiplexer, in a third transistor, a source is connected to a first input terminal and a drain is connected to an output terminal and, in a fourth transistor, a source is connected to a second input terminal and a drain is connected to the output terminal. Further, a step of holding a first potential in a node to which the first transistor, the first capacitor, and a gate of the third transistor are connected and holding a second potential higher than the first potential in the node is included.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: May 10, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Patent number: 9336858
    Abstract: A semiconductor device which stores data by using a transistor whose leakage current between source and drain in an off state is small as a writing transistor. In a matrix including a plurality of memory cells in which a drain of the writing transistor is connected to a gate of a reading transistor and the drain of the writing transistor is connected to one electrode of a capacitor, a gate of the writing transistor is connected to a writing word line; a source of the writing transistor is connected to a writing bit line; and a source and a drain of the reading transistor are connected to a reading bit line and a bias line. In order to reduce the number of wirings, the writing bit line or the bias line is substituted for the reading bit line in another column.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: May 10, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura