Patents by Inventor Yasuyuki Shimada

Yasuyuki Shimada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967461
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately laminated therein, and two end surfaces opposing each other in a length direction, and two side surfaces opposing each other in a width direction, and two external electrodes respectively on the two end surfaces of the multilayer body. At least one of two opposed main surfaces of the multilayer ceramic capacitor includes raised portions provided respectively on one side and another side with a middle portion of the main surface interposed therebetween. The raised portions are each raised to become thicker in the lamination direction from the middle portion toward an outer periphery of the main surface.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: April 23, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yasuyuki Shimada, Akira Tanaka, Shinichi Kokawa
  • Patent number: 11948746
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately stacked on one another, and two external electrodes respectively on two end surfaces of the multilayer body. Each of the dielectric layers includes, at a location coincident with an end portion of a respective one of the internal electrodes, a thick-walled portion thicker in a stacking direction than a portion corresponding in position to a middle portion of a main surface of the multilayer body. When viewed in the stacking direction, positions of some of the thick-walled portions of the dielectric layers are out of alignment with positions of a remainder of the thick-walled portions of the dielectric layers.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: April 2, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yasuyuki Shimada
  • Publication number: 20240092084
    Abstract: A technique capable of certainly suppressing adhesion of waste ink to hands, clothes, and the like during replacement of a waste ink tank is provided. There are included a container portion provided with an insertion port which a discharge member discharging waste ink can be inserted into and pulled out from and a shielding portion movable between a shielding position where the insertion port is shielded and an open position where the insertion port is opened.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 21, 2024
    Inventors: KOKI SHIMADA, TOSHIAKI SOMANO, YUTA ARAKI, KAORI KATAYAMA, YUSUKE TANAKA, TETSU HAMANO, ERIKA IYAMA, FUMIE KAMEYAMA, NOBUHIRO TOKI, YASUYUKI TAKANAKA, DAIJU TAKEDA
  • Publication number: 20230020333
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately stacked on one another, and two external electrodes on two end surfaces of the multilayer body. The internal electrodes include first internal electrodes and second internal electrodes arranged alternately. A distance between the first internal electrodes adjacent to each other includes a distance T11 and a distance T12. The distance T11 is greater than the distance T12. A distance between the second internal electrodes adjacent to each other includes a distance T21 and a distance T22. The distance T21 is greater than the distance T22.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 19, 2023
    Inventor: Yasuyuki SHIMADA
  • Publication number: 20230016359
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately stacked on one another, and two external electrodes respectively on two end surfaces of the multilayer body. Each of the dielectric layers includes, at a location coincident with an end portion of a respective one of the internal electrodes, a thick-walled portion thicker in a stacking direction than a portion corresponding in position to a middle portion of a main surface of the multilayer body. When viewed in the stacking direction, positions of some of the thick-walled portions of the dielectric layers are out of alignment with positions of a remainder of the thick-walled portions of the dielectric layers.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 19, 2023
    Inventor: Yasuyuki SHIMADA
  • Patent number: 11404213
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and layered internal electrodes, first and second main surfaces, first and second side surfaces, first and second end surfaces, and an external electrode connected to the internal electrodes and provided on each of the first and second end surfaces. A region where the internal electrodes are superimposed is defined as an effective region, regions respectively located on sides of the first and second end surfaces relative to the effective region are defined as first and second regions, and a bent portion where the dielectric layers and the internal electrodes are bent is located in the first region. In the bent portion, all vertices in the stacking direction are located within a range that extends by about 25 ?m to about 35 ?m in a length direction from the effective region of the multilayer body.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: August 2, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shinichi Kokawa, Yasuyuki Shimada, Naoto Muranishi, Takehisa Sasabayashi
  • Patent number: 11398349
    Abstract: An end surface outer layer Mn/Ti peak intensity ratio, which is a ratio of a peak intensity of Mn found by laser ICP to a peak intensity of Ti found by laser ICP in a dielectric ceramic layer in an end surface outer layer portion, is higher than a central portion Mn/Ti peak intensity ratio, which is a ratio of a peak intensity of Mn found by laser ICP to a peak intensity of Ti found by laser ICP in the dielectric ceramic layer in a central portion in a width direction, a length direction, and a layering direction in an effective portion, and a peak intensity of Ni found by TEM-EDX is in a portion of the dielectric ceramic layers in the end surface outer layer portion.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: July 26, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takehisa Sasabayashi, Yasuyuki Shimada, Naoto Muranishi, Shinichi Kokawa
  • Patent number: 11380483
    Abstract: In a multilayer ceramic capacitor, when a ratio of an ICP peak intensity of Mn to an ICP peak intensity of Ti is an Mn/Ti peak intensity ratio, a value of the Mn/Ti peak intensity ratio in a dielectric ceramic layer in at least one of a main surface outer layer portion, a side surface outer layer portion, and an end surface outer layer portion is in a range of two times to fifteen times a value of the Mn/Ti peak intensity ratio in a dielectric ceramic layer in a central portion of an effective portion in a width direction, a length direction, and a stacking direction.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: July 5, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takehisa Sasabayashi, Yasuyuki Shimada, Naoto Muranishi, Shinichi Kokawa
  • Patent number: 11373805
    Abstract: An Mn/Ti peak intensity ratio in a dielectric ceramic layer in an end surface outer layer portion is within two times to fifteen times of the Mn/Ti peak intensity ratio in a central portion, a rare earth element/Ti peak intensity ratio in the dielectric ceramic layer in the end surface outer layer portion is within two times to seven times the rare earth element/Ti peak intensity ratio in the central portion, an Si/Ti peak intensity ratio in the dielectric ceramic layer in a side surface outer layer portion is within two times to five times the Si/Ti peak intensity ratio in the central portion, and the rare earth element/Ti peak intensity ratio in the dielectric ceramic layer in the side surface outer layer portion is within two times to seven times the rare earth element/Ti peak intensity ratio.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: June 28, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takehisa Sasabayashi, Yasuyuki Shimada, Naoto Muranishi, Shinichi Kokawa
  • Publication number: 20220148807
    Abstract: A multilayer ceramic capacitor includes end-surface external electrodes and side-surface external electrodes. The end-surface external electrodes are respectively provided at end surfaces of a multilayer body and are respectively connected to end-surface connecting internal electrodes. The side-surface external electrodes are respectively provided at the side surfaces of the multilayer body and respectively connected to side-surface connecting internal electrodes. The end-surface connecting internal electrodes each include end surface opposing portion opposing the side-surface connecting internal electrode 15B adjacent in a lamination direction, and an end surface lead-out portion extending from the end surface opposing portion to one of the end-surface external electrodes.
    Type: Application
    Filed: October 21, 2021
    Publication date: May 12, 2022
    Inventors: Akira ISHIZUKA, Shinichi KOKAWA, Yasuyuki SHIMADA
  • Publication number: 20220093331
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrodes alternately laminated therein, and two end surfaces opposing each other in a length direction, and two side surfaces opposing each other in a width direction, and two external electrodes respectively on the two end surfaces of the multilayer body. At least one of two opposed main surfaces of the multilayer ceramic capacitor includes raised portions provided respectively on one side and another side with a middle portion of the main surface interposed therebetween. The raised portions are each raised to become thicker in the lamination direction from the middle portion toward an outer periphery of the main surface.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 24, 2022
    Inventors: Yasuyuki SHIMADA, Akira TANAKA, Shinichi KOKAWA
  • Publication number: 20210287854
    Abstract: An end surface outer layer Mn/Ti peak intensity ratio, which is a ratio of a peak intensity of Mn found by laser ICP to a peak intensity of Ti found by laser ICP in a dielectric ceramic layer in an end surface outer layer portion, is higher than a central portion Mn/Ti peak intensity ratio, which is a ratio of a peak intensity of Mn found by laser ICP to a peak intensity of Ti found by laser ICP in the dielectric ceramic layer in a central portion in a width direction, a length direction, and a layering direction in an effective portion, and a peak intensity of Ni found by TEM-EDX is in a portion of the dielectric ceramic layers in the end surface outer layer portion.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 16, 2021
    Inventors: Takehisa Sasabayashi, Yasuyuki Shimada, Naoto Muranishi, Shinichi Kokawa
  • Publication number: 20210287853
    Abstract: An Mn/Ti peak intensity ratio in a dielectric ceramic layer in an end surface outer layer portion is within two times to fifteen times of the Mn/Ti peak intensity ratio in a central portion, a rare earth element/Ti peak intensity ratio in the dielectric ceramic layer in the end surface outer layer portion is within two times to seven times the rare earth element/Ti peak intensity ratio in the central portion, an Si/Ti peak intensity ratio in the dielectric ceramic layer in a side surface outer layer portion is within two times to five times the Si/Ti peak intensity ratio in the central portion, and the rare earth element/Ti peak intensity ratio in the dielectric ceramic layer in the side surface outer layer portion is within two times to seven times the rare earth element/Ti peak intensity ratio.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 16, 2021
    Inventors: Takehisa Sasabayashi, Yasuyuki Shimada, Naoto Muranishi, Shinichi Kokawa
  • Publication number: 20210210285
    Abstract: In a multilayer ceramic capacitor, when a ratio of an ICP peak intensity of Mn to an ICP peak intensity of Ti is an Mn/Ti peak intensity ratio, a value of the Mn/Ti peak intensity ratio in a dielectric ceramic layer in at least one of a main surface outer layer portion, a side surface outer layer portion, and an end surface outer layer portion is in a range of two times to fifteen times a value of the Mn/Ti peak intensity ratio in a dielectric ceramic layer in a central portion of an effective portion in a width direction, a length direction, and a stacking direction.
    Type: Application
    Filed: December 23, 2020
    Publication date: July 8, 2021
    Inventors: Takehisa Sasabayashi, Yasuyuki Shimada, Naoto Muranishi, Shinichi Kokawa
  • Publication number: 20210074482
    Abstract: A multilayer ceramic capacitor includes a multilayer body including dielectric layers and layered internal electrodes, first and second main surfaces, first and second side surfaces, first and second end surfaces, and an external electrode connected to the internal electrodes and provided on each of the first and second end surfaces. A region where the internal electrodes are superimposed is defined as an effective region, regions respectively located on sides of the first and second end surfaces relative to the effective region are defined as first and second regions, and a bent portion where the dielectric layers and the internal electrodes are bent is located in the first region. In the bent portion, all vertices in the stacking direction are located within a range that extends by about 25 ?m to about 35 ?m in a length direction from the effective region of the multilayer body.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 11, 2021
    Inventors: Shinichi KOKAWA, Yasuyuki SHIMADA, Naoto MURANISHI, Takehisa SASABAYASHI
  • Patent number: 10395833
    Abstract: In a laminated ceramic electronic component, a side-surface outer electrode includes a first electrode portion including side-surface electrode portions located on first and second side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the first electrode portion to portions of third and fourth side surfaces; and a second electrode portion including side-surface electrode portions located on the third and fourth side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the second electrode portion to portions of the first and second side surfaces. The wrap-around electrode portions of the second electrode portion reach regions covering portions of outermost inner electrodes located at an outermost side portion among inner electrodes, which portions are exposed in the first and second side surfaces.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 27, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yasuyuki Shimada, Takashi Sawada
  • Patent number: 10361032
    Abstract: A ceramic capacitor that has low ESL and is suitable to be built into a substrate includes a first external electrode including a first portion extending from a portion located on a first principal surface to a portion of a first end surface, a second portion extending from a portion located on a second principal surface to a portion of the first end surface, a third portion extending from a portion located on a first side surface to a portion of the first end surface, and a fourth portion extending from a portion located on a second side surface to a portion of the first end surface. The first external electrode includes an outermost layer that is a Cu plated layer.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: July 23, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yasuyuki Shimada
  • Patent number: 10079104
    Abstract: A capacitor includes an outer electrode extends over first and second main surfaces from exposed portions of inner electrodes on a first side surface and exposed portions of the inner electrodes on a second side surface. An outermost layer of the outer electrode includes a Cu-plated layer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 18, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yasuyuki Shimada
  • Publication number: 20170345562
    Abstract: A ceramic capacitor that has low ESL and is suitable to be built into a substrate includes a first external electrode including a first portion extending from a portion located on a first principal surface to a portion of a first end surface, a second portion extending from a portion located on a second principal surface to a portion of the first end surface, a third portion extending from a portion located on a first side surface to a portion of the first end surface, and a fourth portion extending from a portion located on a second side surface to a portion of the first end surface. The first external electrode includes an outermost layer that is a Cu plated layer.
    Type: Application
    Filed: May 30, 2017
    Publication date: November 30, 2017
    Inventor: Yasuyuki SHIMADA
  • Publication number: 20170169951
    Abstract: A capacitor includes an outer electrode extends over first and second main surfaces from exposed portions of inner electrodes on a first side surface and exposed portions of the inner electrodes on a second side surface. An outermost layer of the outer electrode includes a Cu-plated layer.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 15, 2017
    Inventor: Yasuyuki SHIMADA