Patents by Inventor Yen-Yu Chen

Yen-Yu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240019778
    Abstract: Metal-comprising resist layers (for example, metal oxide resist layers), methods for forming the metal-comprising resist layers, and lithography methods that implement the metal-comprising resist layers are disclosed herein that can improve lithography resolution. An exemplary method includes forming a metal oxide resist layer over a workpiece by performing deposition processes to form metal oxide resist sublayers of the metal oxide resist layer over the workpiece and performing a densification process on at least one of the metal oxide resist sublayers. Each deposition process forms a respective one of the metal oxide resist sublayers. The densification process increases a density of the at least one of the metal oxide resist sublayers. Parameters of the deposition processes and/or parameters of the densification process can be tuned to achieve different density profiles, different density characteristics, and/or different absorption characteristics to optimize patterning of the metal oxide resist layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: January 18, 2024
    Inventors: Yi-Chen Kuo, Chih-Cheng Liu, Yen-Yu Chen, Jr-Hung Li, Chi-Ming Yang, Tze-Liang Lee
  • Publication number: 20240014019
    Abstract: A deposition apparatus includes a process chamber, a wafer support in the process chamber, a backplane structure having a first surface in the process chamber facing the wafer support, a target having a second surface facing the first surface and a third surface facing the wafer support, and an adhesion structure in physical contact with the backplane structure and the target. The adhesion structure has an adhesion material layer, and a spacer embedded in the adhesion material layer.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 11, 2024
    Inventors: Chia-Hsi WANG, Yen-Yu CHEN
  • Publication number: 20240011160
    Abstract: A precursor supply system for thin film deposition is provided. The precursor supply system includes a precursor source container, and the precursor source container includes: a top wall; a bottom wall; a side wall circumferentially connecting the top wall and the bottom wall, wherein at least a portion of an interior surface of the precursor source container has a three-dimensional (3D) pattern; an inlet configured to allow introduction of a carrier gas into the precursor source container; and an outlet configured to allow exit of a precursor vapor generated in the precursor source container.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Inventors: Wen-Hao Cheng, Hsuan-Chih Chu, Yen-Yu Chen
  • Publication number: 20240003993
    Abstract: A thin-film deposition system includes a thin-film deposition chamber. A magnetron assembly is positioned within the thin-film deposition chamber to assist in thin-film deposition processes. A magnetic sensor apparatus is positioned adjacent to the magnetron assembly. The magnetic sensor apparatus includes a plurality of magnetic sensors that each sense the magnetic field in a particular location within the thin-film deposition chamber. The control system generates a magnetic field distribution based on the sensor signals from the magnetic sensors. An analysis model that has been trained with a machine learning process analyzes the magnetic field distribution and determines whether or not an abnormal magnetic field distributions process. The control system can stop the thin-film deposition process based on the output of the analysis model.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Wen-Hao CHENG, Hsuan-Chih CHU, Yen-Yu CHEN
  • Publication number: 20230417306
    Abstract: A knob-driven adjusting mechanism has two fastening belts, one adjusting device, two base seats and two shafts. The fastening belt goes through a long groove. The fastening belt is formed with a tooth row on the side of the long groove. The adjusting device has a shell seat and a knob, and each fastening belt respectively goes through the shell seat. The knob is configured on the shell seat in a rotary form to drive the fastening belts. Each base seat is respectively used for the two side parts configured on an object. The base seat has two protruding support parts. Each shaft is respectively configured on each base seat. The two ends of the shaft respectively goes into each support part in the axial direction. Each shaft is respectively connected to each fastening belt, so that each fastening belt can respectively rotate in relation to the base seat.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Yuan-Ming CHEN, Tuan-Yu CHEN, Yen-Yu CHEN
  • Patent number: 11855219
    Abstract: A fin field effect transistor (FinFET), and a method of forming, is provided. The FinFET has a fin having one or more semiconductor layers epitaxially grown on a substrate. A first passivation layer is formed over the fins, and isolation regions are formed between the fins. An upper portion of the fins are reshaped and a second passivation layer is formed over the reshaped portion. Thereafter, a gate structure may be formed over the fins and source/drain regions may be formed.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Yen-Yu Chen, Chi-Yuan Shih, Chi-Wen Liu
  • Patent number: 11851751
    Abstract: A deposition system is provided capable of cleaning itself by removing a target material deposited on a surface of a collimator. The deposition system in accordance with the present disclosure includes a substrate process chamber. The deposition includes a substrate pedestal in the substrate process chamber, the substrate pedestal configured to support a substrate, a target enclosing the substrate process chamber, and a collimator having a plurality of hollow structures disposed between the target and the substrate, a vibration generating unit, and cleaning gas outlet.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hao Cheng, Hsuan-Chih Chu, Yen-Yu Chen
  • Publication number: 20230395392
    Abstract: A method for manufacturing a semiconductor structure includes: forming a semiconductor device on a main region of the device substrate, the device substrate having a peripheral region surrounding the main region; forming a first filling layer on the peripheral region of the device substrate; forming a second filling layer over the first filling layer and the semiconductor device after forming the first filling layer, the second filling layer having a polishing rate different from that of the first filling layer; performing a planarization process over the second filling layer to remove a portion of the second filling layer so that a remaining portion of the second filling layer has a planarized surface opposite to the device substrate; and bonding the device substrate to a carrier substrate through the first filling layer and the remaining portion of the second filling layer.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 7, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Yu CHOU, Yen-Yu CHEN, Meng-Ku CHEN, Shiang-Bau WANG, Tze-Liang LEE
  • Publication number: 20230381701
    Abstract: A device for removing particles in a gas stream includes a first cylindrical portion configured to receive the gas stream containing a target gas and the particles, a rotatable device disposed within the first cylindrical portion and configured to generate a centrifugal force when in a rotational action to divert the particles away from the rotatable device, a second cylindrical portion coupled to the first cylindrical portion and configured to receive the target gas, and a third cylindrical portion coupled to the first cylindrical portion and surrounding the second cylindrical portion, the third cylindrical portion being configured to receive the diverted particles.
    Type: Application
    Filed: August 13, 2023
    Publication date: November 30, 2023
    Inventors: Wen-Hao Cheng, Hsuan-Chih Chu, Yen-Yu Chen
  • Publication number: 20230386917
    Abstract: A method includes etching a dielectric layer to form a trench in the dielectric layer, depositing a metal layer extending into the trench, performing a nitridation process on the metal layer to convert a portion of the metal layer into a metal nitride layer, performing an oxidation process on the metal nitride layer to form a metal oxynitride layer, removing the metal oxynitride layer, and filling a metallic material into the trench using a bottom-up deposition process to form a contact plug.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 30, 2023
    Inventors: Yen-Yu Chen, Chung-Liang Cheng
  • Publication number: 20230386942
    Abstract: A deposition system is provided capable of measuring at least one of the film characteristics (e.g., thickness, resistance, and composition) in the deposition system. The deposition system in accordance with the present disclosure includes a substrate process chamber. The deposition system in accordance with the present disclosure includes a substrate pedestal in the substrate process chamber, the substrate pedestal configured to support a substrate, and a target enclosing the substrate process chamber. A shutter disk including an in-situ measuring device is provided.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 30, 2023
    Inventors: Wen-Hao CHENG, Yen-Yu CHEN, Yi-Ming DAI
  • Publication number: 20230387244
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate containing a first active region in a first region of the substrate and a second active region in a second region of the substrate, a plurality of first gate structures over the first active region each including a first gate stack having a first high-k gate dielectric and a first gate electrode and first gate spacers surrounding the first gate stack, and a plurality of second gate structures over the second active region each including a second gate stack having a second high-k gate dielectric and a second gate electrode and second gate spacers surrounding the second gate stack. At least a portion of the second gate electrode comprises dopants.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Anhao CHENG, Yen-Yu CHEN, Fang-Ting Kuo
  • Publication number: 20230383400
    Abstract: A deposition system is provided capable of cleaning itself by removing a target material deposited on a surface of a collimator. The deposition system in accordance with the present disclosure includes a substrate process chamber. The deposition includes a substrate pedestal in the substrate process chamber, the substrate pedestal configured to support a substrate, a target enclosing the substrate process chamber, and a collimator having a plurality of hollow structures disposed between the target and the substrate, a vibration generating unit, and cleaning gas outlet.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Wen-Hao CHENG, Hsuan-Chih CHU, Yen-Yu CHEN
  • Publication number: 20230374654
    Abstract: A method is provided. The method includes the following steps: introducing a first physical vapor deposition (PVD) target and a second PVD target in a PVD system, the first PVD target containing a boron-containing cobalt iron alloy (FeCoB) with an initial boron concentration, and the second PVD target containing boron; determining parameters of the PVD system based on a target boron concentration larger than the initial boron concentration; and depositing a FeCoB film on a substrate according to the parameters of the PVD system.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 23, 2023
    Inventors: Chia-Hsi Wang, Yen-Yu Chen, Jen-Hao Chien
  • Publication number: 20230375920
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Ming-Hui WENG, Chen-Yu LIU, Chih-Cheng LIU, Yi-Chen KUO, Jia-Lin WEI, Yen-Yu CHEN, Jr-Hung LI, Yahru CHENG, Chi-Ming YANG, Tze-Liang LEE, Ching-Yu CHANG
  • Patent number: 11823964
    Abstract: A deposition system is provided capable of measuring at least one of the film characteristics (e.g., thickness, resistance, and composition) in the deposition system. The deposition system in accordance with the present disclosure includes a substrate process chamber. The deposition system in accordance with the present disclosure includes a substrate pedestal in the substrate process chamber, the substrate pedestal configured to support a substrate, and a target enclosing the substrate process chamber. A shutter disk including an in-situ measuring device is provided.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Hao Cheng, Yen-Yu Chen, Yi-Ming Dai
  • Patent number: 11823908
    Abstract: A method includes removing a dummy gate to form a gate trench. A gate dielectric layer is deposited over a bottom and sidewalls of the gate trench. A first work function metal layer is deposited over the gate dielectric layer. A dummy layer is deposited over the first work function metal layer. An impurity is introduced into the dummy layer and the first work function metal layer after the dummy layer is deposited. The dummy layer is removed after the impurity is introduced into the dummy layer and the first work function metal layer. The gate trench is filled with a conductive material after the dummy layer is removed.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Yu Chen, Yu-Chi Lu, Chih-Pin Tsao, Shih-Hsun Chang
  • Patent number: 11822237
    Abstract: A method of manufacturing a semiconductor device includes forming a photoresist layer over a substrate, including combining a first precursor and a second precursor in a vapor state to form a photoresist material, and depositing the photoresist material over the substrate. A protective layer is formed over the photoresist layer. The photoresist layer is selectively exposed to actinic radiation through the protective layer to form a latent pattern in the photoresist layer. The protective layer is removed, and the latent pattern is developed by applying a developer to the selectively exposed photoresist layer to form a pattern.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Hui Weng, Chen-Yu Liu, Chih-Cheng Liu, Yi-Chen Kuo, Jia-Lin Wei, Yen-Yu Chen, Jr-Hung Li, Yahru Cheng, Chi-Ming Yang, Tze-Liang Lee, Ching-Yu Chang
  • Patent number: 11823878
    Abstract: A deposition apparatus includes a process chamber, a wafer support in the process chamber, a backplane structure having a first surface in the process chamber facing the wafer support, a target having a second surface facing the first surface and a third surface facing the wafer support, and an adhesion structure in physical contact with the backplane structure and the target. The adhesion structure has an adhesion material layer, and a spacer embedded in the adhesion material layer.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Hsi Wang, Yen-Yu Chen
  • Publication number: 20230369048
    Abstract: A method of manufacturing semiconductor device includes forming a multilayer photoresist structure including a metal-containing photoresist over a substrate. The multilayer photoresist structure includes two or more metal-containing photoresist layers having different physical parameters. The metal-containing photoresist is a reaction product of a first precursor and a second precursor, and each layer of the multilayer photoresist structure is formed using different photoresist layer formation parameters. The different photoresist layer formation parameters are one or more selected from the group consisting of the first precursor, an amount of the first precursor, the second precursor, an amount of the second precursor, a length of time each photoresist layer formation operation, and heating conditions of the photoresist layers.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Jia-Lin WEI, Ming-Hui Weng, Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Yahru Cheng, Jr-Hung Li, Ching-Yu Chang, Tze-Liang Lee, Chi-Ming Yang