Patents by Inventor Yi Lai

Yi Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10844410
    Abstract: Mutant thioesterases having enhanced medium chain substrate activity, polynucleotides encoding and configured to express the mutant thioesterases in a transformed host cell, host cells transformed to contain the polynucleotides, and methods of using same.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: November 24, 2020
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Brian F. Pfleger, Nestor Hernandez-Lozada, Rung-Yi Lai
  • Patent number: 10732386
    Abstract: An optical lens system of the present disclosure assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, an optical filter and a sensor. The first lens element and the fourth lens element each have a negative power. The second lens element, the third lens element, the fifth lens element and the sixth lens element each have a positive power.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 4, 2020
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Cheng-Yi Lai
  • Publication number: 20200192069
    Abstract: Wide angle lens for imaging objects disposed away from the optical axis towards the periphery of the field of view.
    Type: Application
    Filed: May 31, 2018
    Publication date: June 18, 2020
    Inventors: Maksim MAKEEV, Mark S SCHNITTMAN, Xiaoyu MIAO, Ming-lin LEE, Cheng-Yi Lai, Chien-Hung CHOU
  • Patent number: 10571252
    Abstract: A surface topography optical measuring system including image capture modules, a control module and a computation module is provided. Each image capture module includes an electronically controlled focal length tunable lens, an optical assembly and an image sensor, wherein the image capture modules respectively capture images at different heights between a lowest and a highest surfaces of an object. The control module is coupled to the image capture modules to independently control the image capture modules. The computation module is coupled to the control module and the image sensor of each image capture module, wherein the computation module perform calibration of the surface topography optical measuring system and assesses in-focused pixels in the captured images to measure a height difference between a highest and a lowest surfaces of the object or between any surfaces of interest of the object. A surface topography optical measuring method is also provided.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: February 25, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Ludovic Angot, Yueh-Yi Lai
  • Publication number: 20200025555
    Abstract: A surface topography optical measuring system including image capture modules, a control module and a computation module is provided. Each image capture module includes an electronically controlled focal length tunable lens, an optical assembly and an image sensor, wherein the image capture modules respectively capture images at different heights between a lowest and a highest surfaces of an object. The control module is coupled to the image capture modules to independently control the image capture modules. The computation module is coupled to the control module and the image sensor of each image capture module, wherein the computation module perform calibration of the surface topography optical measuring system and assesses in-focused pixels in the captured images to measure a height difference between a highest and a lowest surfaces of the object or between any surfaces of interest of the object. A surface topography optical measuring method is also provided.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Ludovic Angot, Yueh-Yi Lai
  • Patent number: 10520701
    Abstract: An optical lens of the present disclosure assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, an optical filter and a sensor. The optical lens also has an axis. The first lens element, the fourth lens element and the sixth lens element have negative power, the second lens element, the third lens element and the fifth lens element have positive power.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: December 31, 2019
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Cheng-Yi Lai
  • Publication number: 20190356747
    Abstract: The present disclosure provides a server and a method for service matching and resource matching. The server stores a first resource available information and a second resource available information. The server receives a user request from a user device and determines a resource matching information according to the first resource available information and the second resource available information in response to the user request. The server transmits the resource matching information to the user device.
    Type: Application
    Filed: April 19, 2019
    Publication date: November 21, 2019
    Inventors: CHENG-HUA WU, CHENG KUO CHEN, CHIEN-YI LAI
  • Publication number: 20190284588
    Abstract: Mutant thioesterases having enhanced medium chain substrate activity, polynucleotides encoding and configured to express the mutant thioesterases in a transformed host cell, host cells transformed to contain the polynucleotides, and methods of using same.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 19, 2019
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: BRIAN F. PFLEGER, NESTOR HERNANDEZ-LOZADA, RUNG-YI LAI
  • Publication number: 20190243094
    Abstract: An optical lens system of the present disclosure assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, an optical filter and a sensor. The first lens element and the fourth lens element each have a negative power. The second lens element, the third lens element, the fifth lens element and the sixth lens element each have a positive power.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 8, 2019
    Inventor: CHENG-YI LAI
  • Patent number: 10351611
    Abstract: According to the embodiments described herein, a series of biological materials for treatment/therapy of DMD and/or BMD through the recovery of sarcolemmal nNOS is provided. The biological material comprises the complete dystrophin repeats R16 and R17 or certain domains, sections, or fragments of the dystrophin repeats R16 and R17. In some aspects, such domains, sections, or fragments may be selected from sequence motifs including dystrophin R17 ?1 helix, ?2 and ?3 helices of both R16 and R17, or a combination thereof.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: July 16, 2019
    Assignee: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Yi Lai, Junling Zhao, Yongping Yue, Dongsheng Duan
  • Patent number: 10351971
    Abstract: This application describes a method of preparation of a natural graphene cellulose blended fiber, which comprises using a graphite powder as a raw material for preparing a graphene solution, adding the graphene solution to a slurry formed by mixing and dissolving a wood pulp with N-methylmorpholine N-oxide (NMMO), removing the water content thereof to form a spinning dope, and then spinning the spinning dope by a Dry-Jet Wet method to manufacture a natural graphene cellulose blended fiber. The present method does not require a highly toxic hydrazine hydrate solution. Further, by increasing the adding ratio of the graphene solution in the manufacturing process, control of the antistatic properties and thermal transferring functions can be achieved, and thereby various requirements of different consumers can be satisfied. Besides, the fibers can decompose naturally after being used, and thus the product is harmless, natural, and environmentally friendly.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: July 16, 2019
    Assignee: ACELON CHEMICALS AND FIBER CORPORATION
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang, Shao-Hua Chou, Chia-Yu Hsu
  • Publication number: 20190184033
    Abstract: Synthetic nucleic acids encoding mini and microdystrophin genes comprising the membrane binding motifs or domains of the R10-R11-R12 region are provided. Also provided are vectors, host cells, and related methods of using the same to treat a subject suffering from Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD) or X-linked dilated cardiomyopathy (XLDC), or for ameliorating one or more adverse effects of DMD, BMD, or XLDC. Also provided are a fusion protein comprising a nNOS binding domain of dystrophin R16-R17 that is operably linked to a syntrophin PDZ domain and synthetic nucleic acids comprising the same that can be used to treat subjects with diseases characterized by loss of sarcolemmal neuronal nitric oxide synthase (nNOS) activity.
    Type: Application
    Filed: June 21, 2017
    Publication date: June 20, 2019
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Dongsheng Duan, Yi Lai, Junling Zhao, Yongping Yue
  • Publication number: 20190154548
    Abstract: A machine diagnostic system includes a performance evaluating module, a machine adjusting module and multiple sensors. The performance evaluating module evaluates the performance value of a part of a machine prior to production and predicts whether the part can be used to complete multiple batches of semi-products. If yes, the machine adjusting module sets a set value of the machine so that the machine can complete the multiple batches of semi-products. When the batches of semi-products are processed by the machine, a real-time production data is generated. When the sensors detect that the real-time production data contains an abnormal state data, re-evaluating whether the machine can complete the remaining semi-products according to the set value. If yes, enabling the machine to continue processing the remaining semi-products according to the set value. If no, updating the set value of the machine.
    Type: Application
    Filed: December 7, 2017
    Publication date: May 23, 2019
    Applicant: INSTITUTE FOR INFORMATION INDUSTRY
    Inventors: Ci-Yi LAI, Hung-An KAO, Hung-Sheng CHIU
  • Publication number: 20190129136
    Abstract: An optical lens of the present disclosure assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, an optical filter and a sensor. The optical lens also has an axis. The first lens element, the fourth lens element and the sixth lens element have negative power, the second lens element, the third lens element and the fifth lens element have positive power.
    Type: Application
    Filed: December 7, 2017
    Publication date: May 2, 2019
    Inventor: CHENG-YI LAI
  • Publication number: 20190091484
    Abstract: The present invention provides a method for manufacturing a neural probe incorporated with an optical waveguide. The method for manufacturing a neural probe incorporated with an optical waveguide comprises the following steps. A mold-filling step, for providing a base with at least one groove formed therein. A disposing step, for disposing and overlaying a substrate having a plurality of electrode parts on the groove of the base. A combining step, for solidifying the photosensitive adhesive by a solidification process, the solidified photosensitive adhesive forming an optical waveguide and being combined with the substrate. A mold-releasing step, for removing the base from the optical waveguide and the substrate, the substrate and the optical waveguide forming a product.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 28, 2019
    Inventors: Hsin-Yi Lai, You-Yin Chen
  • Patent number: 10190242
    Abstract: This application describes a method of preparation of a natural graphene cellulose blended spunbond nonwoven fabric, which comprises using a graphite powder as a raw material for preparing a graphene solution, adding the graphene solution to a slurry formed by mixing and dissolving a wood pulp with N-methylmorpholine N-oxide (NMMO), removing the water content thereof to form a spinning dope, and then directly preparing the natural graphene cellulose blended spunbond nonwoven fabric by a spunbond process. The present method does not require a highly toxic hydrazine hydrate solution. Further, by increasing the adding ratio of the graphene solution in the manufacturing process, control of the antistatic properties and thermal transferring function can be achieved, and thereby various requirements of different consumers can be satisfied. Besides, the fabric can decompose naturally after being used, and thus the product is harmless, natural, and environmentally friendly.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: January 29, 2019
    Assignee: ACELON CHEMICALS AND FIBER CORPORATION
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang, Shao-Hua Chou, Chia-Yu Hsu
  • Patent number: 10190243
    Abstract: This application describes a method of preparation of a natural graphene cellulose blended meltblown nonwoven fabric, which comprises using a graphite powder as a raw material for preparing a graphene solution, adding the graphene solution to a slurry formed by mixing and dissolving a wood pulp with N-methylmorpholine N-oxide (NMMO), removing the water content thereof to form a spinning dope, and then directly preparing the natural graphene cellulose blended meltblown nonwoven fabric by a meltblown process. The present method does not require a highly toxic hydrazine hydrate solution. Further, by increasing the adding ratio of the graphene solution in the manufacturing process, control of the antistatic properties and thermal transferring function can be achieved, and thereby various requirements of different consumers can be satisfied. Besides, the fabric can decompose naturally after being used, and thus the product is harmless, natural, and environmentally friendly.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: January 29, 2019
    Assignee: ACELON CHEMICALS AND FIBER CORPORATION
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang, Shao-Hua Chou, Chia-Yu Hsu
  • Patent number: 10132007
    Abstract: The present invention provides a fabricating method for meltblown nonwoven from natural cellulose fiber blended with nano silver, which comprises following steps. Firstly, prepare nano silver colloidal sol by reduction titration for mixture of polyvinyl alcohol (PVA), silver nitrate (AgNO3) and sodium borohydride (NaBH4). Secondly, prepare mixing cellulose serum by blending agitation for mixture of wood pulp, N-methylmorpholine N-oxide (NMMO) and stabilizer. Thirdly, prepare blending mucilage from mixing cellulose serum via blending process. Fourthly, produce spinning dope by blending and dehydrating the nano silver colloidal sol and mixing cellulose serum. Fifthly, produce molten filament tow by meltblown spinning method in association with coagulation, regeneration in coagulation bath, and water rinse.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: November 20, 2018
    Assignee: ACELON CHEMICALS AND FIBER CORPORATION
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang, Shao-Hua Chou, Meng-Heng Hsieh
  • Patent number: 10132009
    Abstract: The present invention provides a fabricating method for natural cellulose fiber blended with nano silver. The fabricating method comprises following steps: Firstly, prepare nano silver colloidal sol by reduction titration for mixture of polyvinyl alcohol (PVA), silver nitrate (AgNO3) and sodium borohydride (NaBH4). Secondly, prepare mixing cellulose serum by blending agitation for mixture of wood pulp, N-methylmorpholine N-oxide (NMMO) and stabilizer. Thirdly, produce spinning dope by blending and dehydrating the nano silver colloidal sol and mixing cellulose serum. Fourthly, produce fibrous tow by Dry-Jet Wet Spinning method in association with coagulation, regeneration in coagulation bath, and water rinse. Finally, obtain final product of natural cellulose fiber blended with nano silver by post treatments of dry, oil and coil in proper order.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: November 20, 2018
    Assignee: ACELON CHEMICALS AND FIBER CORPORATION
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang, Shao-Hua Chou, Meng-Heng Hsieh
  • Patent number: 10094049
    Abstract: The present invention provides a fabricating method for spunbond nonwoven from natural cellulose fiber blended with nano silver, which comprises following steps. Firstly, prepare nano silver colloidal sol by reduction titration for mixture of polyvinyl alcohol (PVA), silver nitrate (AgNO3) and sodium borohydride (NaBH4). Secondly, prepare mixing cellulose serum by blending agitation for mixture of wood pulp, N-methylmorpholine N-oxide (NMMO) and stabilizer. Thirdly, prepare blending mucilage from mixing cellulose serum via blending process. Fourthly, produce spinning dope by blending and dehydrating the nano silver colloidal sol and mixing cellulose serum. Fifthly, produce molten filament tow by spunbond spinning method in association with coagulation, regeneration, water rinse and high-speed stretching process.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: October 9, 2018
    Assignee: ACELON CHEMICALS AND FIBER CORPORATION
    Inventors: Wen-Tung Chou, Ming-Yi Lai, Kun-Shan Huang, Shao-Hua Chou, Meng-Heng Hsieh